Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. Campbell is active.

Publication


Featured researches published by Michael S. Campbell.


Nature | 2013

The African coelacanth genome provides insights into tetrapod evolution.

Chris T. Amemiya; Jessica Alföldi; Alison P. Lee; Shaohua Fan; Hervé Philippe; Iain MacCallum; Ingo Braasch; Tereza Manousaki; Igor Schneider; Nicolas Rohner; Chris Organ; Domitille Chalopin; Jeramiah J. Smith; Mark Robinson; Rosemary A. Dorrington; Marco Gerdol; Bronwen Aken; Maria Assunta Biscotti; Marco Barucca; Denis Baurain; Aaron M. Berlin; Francesco Buonocore; Thorsten Burmester; Michael S. Campbell; Adriana Canapa; John P. Cannon; Alan Christoffels; Gianluca De Moro; Adrienne L. Edkins; Lin Fan

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.


Nature Genetics | 2013

Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution.

Jeramiah J. Smith; Shigehiro Kuraku; Carson Holt; Tatjana Sauka-Spengler; Ning Jiang; Michael S. Campbell; Mark Yandell; Tereza Manousaki; Axel Meyer; Ona Bloom; Jennifer R. Morgan; Joseph D. Buxbaum; Ravi Sachidanandam; Carrie Sims; Alexander S. Garruss; Malcolm Cook; Robb Krumlauf; Leanne M. Wiedemann; Stacia A. Sower; Wayne A. Decatur; Jeffrey A. Hall; Chris T. Amemiya; Nil Ratan Saha; Katherine M. Buckley; Jonathan P. Rast; Sabyasachi Das; Masayuki Hirano; Nathanael McCurley; Peng Guo; Nicolas Rohner

Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms.


PLOS Genetics | 2012

Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

Astrid Vieler; Guangxi Wu; Chia Hong Tsai; Blair Bullard; Adam J. Cornish; Christopher M. Harvey; Ida Barbara Reca; Chelsea K. Thornburg; Rujira Achawanantakun; Christopher J. Buehl; Michael S. Campbell; David Cavalier; Kevin L. Childs; Teresa J. Clark; Rahul R. Deshpande; Erika Erickson; Ann A. Ferguson; Witawas Handee; Que Kong; Xiaobo Li; Bensheng Liu; Steven Lundback; Cheng Peng; Rebecca L. Roston; Sanjaya; Jeffrey P. Simpson; Allan D. TerBush; Jaruswan Warakanont; Simone Zäuner; Eva M. Farré

Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus.


Nature Genetics | 2016

The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

Ingo Braasch; Andrew R. Gehrke; Jeramiah J. Smith; Kazuhiko Kawasaki; Tereza Manousaki; Jeremy Pasquier; Angel Amores; Thomas Desvignes; Peter Batzel; Julian M. Catchen; Aaron M. Berlin; Michael S. Campbell; Daniel Barrell; Kyle J Martin; John F. Mulley; Vydianathan Ravi; Alison P. Lee; Tetsuya Nakamura; Domitille Chalopin; Shaohua Fan; Dustin J. Wcisel; Cristian Cañestro; Jason Sydes; Felix E G Beaudry; Yi Sun; Jana Hertel; Michael J Beam; Mario Fasold; Mikio Ishiyama; Jeremy Johnson

To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.


Nature | 2014

Gibbon genome and the fast karyotype evolution of small apes.

Lucia Carbone; R. Alan Harris; Sante Gnerre; Krishna R. Veeramah; Belen Lorente-Galdos; John Huddleston; Thomas J. Meyer; Javier Herrero; Christian Roos; Bronwen Aken; Fabio Anaclerio; Nicoletta Archidiacono; Carl Baker; Daniel Barrell; Mark A. Batzer; Kathryn Beal; Antoine Blancher; Craig Bohrson; Markus Brameier; Michael S. Campbell; Claudio Casola; Giorgia Chiatante; Andrew Cree; Annette Damert; Pieter J. de Jong; Laura Dumas; Marcos Fernandez-Callejo; Paul Flicek; Nina V. Fuchs; Ivo Gut

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Science | 2013

Genomic Diversity and Evolution of the Head Crest in the Rock Pigeon

Michael D. Shapiro; Zev Kronenberg; Cai Li; Eric T. Domyan; Hailin Pan; Michael S. Campbell; Hao Tan; Chad D. Huff; Haofu Hu; Anna I. Vickrey; Sandra C. Abel Nielsen; Sydney A. Stringham; Hao Hu; M. Thomas P. Gilbert; Mark Yandell; Guojie Zhang; Jun Wang

Coo Coo Charles Darwin was fascinated by the domestic rock pigeon and used this dramatic example of diversity within a species to communicate his ideas about natural selection. Many derived traits in domestic pigeons converge on ecologically and evolutionarily relevant traits in wild species. Shapiro et al. (p. 1063, published online 31 January; see the cover) sequenced the genome of the domestic rock pigeon (Columba livia), along with those of 36 breeds and two feral accessions and its sister species, the hill pigeon (C. rupestris). The results reveal the underlying genetics of the head crest and suggest that all crested breeds may have originated from a single mutational event. From Piazza San Marco to Trafalgar Square, pigeons have captured the attention of tourists from around the world. The geographic origins of breeds and the genetic basis of variation within the widely distributed and phenotypically diverse domestic rock pigeon (Columba livia) remain largely unknown. We generated a rock pigeon reference genome and additional genome sequences representing domestic and feral populations. We found evidence for the origins of major breed groups in the Middle East and contributions from a racing breed to North American feral populations. We identified the gene EphB2 as a strong candidate for the derived head crest phenotype shared by numerous breeds, an important trait in mate selection in many avian species. We also found evidence that this trait evolved just once and spread throughout the species, and that the crest originates early in development by the localized molecular reversal of feather bud polarity.


Plant Physiology | 2014

MAKER-P: A Tool Kit for the Rapid Creation, Management, and Quality Control of Plant Genome Annotations

Michael S. Campbell; MeiYee Law; Carson Holt; Joshua C. Stein; Gaurav D. Moghe; David E. Hufnagel; Jikai Lei; Rujira Achawanantakun; Dian Jiao; Carolyn J. Lawrence; Doreen Ware; Shin Han Shiu; Kevin L. Childs; Yanni Sun; Ning Jiang; Mark Yandell

MAKER-P annotates the entire Arabidopsis and maize genomes in less than 3 h with comparable quality to the current TAIR10 and maize V2 annotation builds. We have optimized and extended the widely used annotation engine MAKER in order to better support plant genome annotation efforts. New features include better parallelization for large repeat-rich plant genomes, noncoding RNA annotation capabilities, and support for pseudogene identification. We have benchmarked the resulting software tool kit, MAKER-P, using the Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) genomes. Here, we demonstrate the ability of the MAKER-P tool kit to automatically update, extend, and revise the Arabidopsis annotations in light of newly available data and to annotate pseudogenes and noncoding RNAs absent from The Arabidopsis Informatics Resource 10 build. Our results demonstrate that MAKER-P can be used to manage and improve the annotations of even Arabidopsis, perhaps the best-annotated plant genome. We have also installed and benchmarked MAKER-P on the Texas Advanced Computing Center. We show that this public resource can de novo annotate the entire Arabidopsis and maize genomes in less than 3 h and produce annotations of comparable quality to those of the current The Arabidopsis Information Resource 10 and maize V2 annotation builds.


JAMA | 2015

Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans

Lisa M. Abegglen; Aleah F. Caulin; Ashley Chan; Kristy Lee; Rosann Robinson; Michael S. Campbell; Wendy K. Kiso; Dennis L. Schmitt; Peter J Waddell; Srividya Bhaskara; Shane T. Jensen; Carlo C. Maley; Joshua D. Schiffman

IMPORTANCE Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. OBJECTIVE To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). DESIGN, SETTING, AND PARTICIPANTS A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n = 644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n = 8), patients with LFS (n = 10), and age-matched human controls (n = 11). Human samples were collected at the University of Utah between June 2014 and July 2015. EXPOSURES Ionizing radiation and doxorubicin. MAIN OUTCOMES AND MEASURES Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. RESULTS Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95% CI, 0%-5%]; African wild dog, 8% [95% CI, 0%-16%]; lion, 2% [95% CI, 0%-7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95% CI, 3.14%-6.49%), compared with humans, who have 11% to 25% cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain reaction. In response to DNA damage, elephant lymphocytes underwent p53-mediated apoptosis at higher rates than human lymphocytes proportional to TP53 status (ionizing radiation exposure: patients with LFS, 2.71% [95% CI, 1.93%-3.48%] vs human controls, 7.17% [95% CI, 5.91%-8.44%] vs elephants, 14.64% [95% CI, 10.91%-18.37%]; P < .001; doxorubicin exposure: human controls, 8.10% [95% CI, 6.55%-9.66%] vs elephants, 24.77% [95% CI, 23.0%-26.53%]; P < .001). CONCLUSIONS AND RELEVANCE Compared with other mammalian species, elephants appeared to have a lower-than-expected rate of cancer, potentially related to multiple copies of TP53. Compared with human cells, elephant cells demonstrated increased apoptotic response following DNA damage. These findings, if replicated, could represent an evolutionary-based approach for understanding mechanisms related to cancer suppression.


Nature | 2017

Improved maize reference genome with single-molecule technologies

Yinping Jiao; Paul Peluso; Jinghua Shi; Tiffany Y. Liang; Michelle C. Stitzer; Bo Wang; Michael S. Campbell; Joshua C. Stein; Xuehong Wei; Chen Shan Chin; Katherine Guill; Michael Regulski; Sunita Kumari; Andrew Olson; Jonathan I. Gent; Kevin L. Schneider; Thomas K. Wolfgruber; Michael R. May; Nathan M. Springer; Eric Antoniou; W. Richard McCombie; Gernot G. Presting; Michael D. McMullen; Jeffrey Ross-Ibarra; R. Kelly Dawe; Alex Hastie; David Rank; Doreen Ware

Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.


Current protocols in human genetics | 2014

Genome Annotation and Curation Using MAKER and MAKER‐P

Michael S. Campbell; Carson Holt; Barry Moore; Mark Yandell

This unit describes how to use the genome annotation and curation tools MAKER and MAKER‐P to annotate protein‐coding and noncoding RNA genes in newly assembled genomes, update/combine legacy annotations in light of new evidence, add quality metrics to annotations from other pipelines, and map existing annotations to a new assembly. MAKER and MAKER‐P can rapidly annotate genomes of any size, and scale to match available computational resources.

Collaboration


Dive into the Michael S. Campbell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingo Braasch

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaohua Fan

University of Konstanz

View shared research outputs
Top Co-Authors

Avatar

Domitille Chalopin

École normale supérieure de Lyon

View shared research outputs
Researchain Logo
Decentralizing Knowledge