Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary P. Grim is active.

Publication


Featured researches published by Gary P. Grim.


Physics of Plasmas | 2011

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion

M. J. Edwards; J. D. Lindl; B. K. Spears; S. V. Weber; L. J. Atherton; D. L. Bleuel; David K. Bradley; D. A. Callahan; Charles Cerjan; D. S. Clark; G. W. Collins; J. Fair; R. J. Fortner; S. H. Glenzer; S. W. Haan; B. A. Hammel; Alex V. Hamza; S. P. Hatchett; N. Izumi; B. Jacoby; O. S. Jones; J. A. Koch; B. J. Kozioziemski; O. L. Landen; R. A. Lerche; B. J. MacGowan; A. J. Mackinnon; E. R. Mapoles; M. M. Marinak; M. J. Moran

Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about ...


Review of Scientific Instruments | 2006

Development of nuclear diagnostics for the National Ignition Facility (invited)

V. Yu. Glebov; D. D. Meyerhofer; T. C. Sangster; C. Stoeckl; S. Roberts; C. A. Barrera; J. Celeste; Charles Cerjan; Lucile S. Dauffy; David C. Eder; R. L. Griffith; S. W. Haan; B. A. Hammel; S. P. Hatchett; N. Izumi; J. R. Kimbrough; J. A. Koch; O. L. Landen; R. A. Lerche; B. J. MacGowan; M. J. Moran; E. W. Ng; Thomas W. Phillips; P. Song; R. Tommasini; B. K. Young; S. E. Caldwell; Gary P. Grim; S. C. Evans; J. M. Mack

The National Ignition Facility (NIF) will provide up to 1.8MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 1019 DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented.


Nuclear Fusion | 2013

Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry

J. A. Frenje; R. Bionta; E. Bond; J. A. Caggiano; D. T. Casey; Charles Cerjan; J. Edwards; M. J. Eckart; D. N. Fittinghoff; S. Friedrich; V. Yu. Glebov; S. H. Glenzer; Gary P. Grim; S. W. Haan; R. Hatarik; S. P. Hatchett; M. Gatu Johnson; O. S. Jones; J. D. Kilkenny; J. P. Knauer; O. L. Landen; R. J. Leeper; S. Le Pape; R. A. Lerche; C. K. Li; A. J. Mackinnon; J. M. McNaney; F. E. Merrill; M. J. Moran; David H. Munro

The neutron spectrum from a cryogenically layered deuterium?tritium (dt) implosion at the National Ignition Facility (NIF) provides essential information about the implosion performance. From the measured primary-neutron spectrum (13?15?MeV), yield (Yn) and hot-spot ion temperature (Ti) are determined. From the scattered neutron yield (10?12?MeV) relative to Yn, the down-scatter ratio, and the fuel areal density (?R) are determined. These implosion parameters have been diagnosed to an unprecedented accuracy with a suite of neutron-time-of-flight spectrometers and a magnetic recoil spectrometer implemented in various locations around the NIF target chamber. This provides good implosion coverage and excellent measurement complementarity required for reliable measurements of Yn, Ti and ?R, in addition to ?R asymmetries. The data indicate that the implosion performance, characterized by the experimental ignition threshold factor, has improved almost two orders of magnitude since the first shot taken in September 2010. ?R values greater than 1?g?cm?2 are readily achieved. Three-dimensional semi-analytical modelling and numerical simulations of the neutron-spectrometry data, as well as other data for the hot spot and main fuel, indicate that a maximum hot-spot pressure of ?150?Gbar has been obtained, which is almost a factor of two from the conditions required for ignition according to simulations. Observed Yn are also 3?10 times lower than predicted. The conjecture is that the observed pressure and Yn deficits are partly explained by substantial low-mode ?R asymmetries, which may cause inefficient conversion of shell kinetic energy to hot-spot thermal energy at stagnation.


Review of Scientific Instruments | 2008

The National Ignition Facility Neutron Imaging System

Mark D. Wilke; S. H. Batha; P. A. Bradley; Robert D. Day; David D. Clark; Valerie E. Fatherley; Joshua P. Finch; R. Gallegos; Felix P. Garcia; Gary P. Grim; Steven A. Jaramillo; Andrew J. Montoya; Michael J. Moran; George L. Morgan; John A. Oertel; Thomas A. Ortiz; J. R. Payton; Peter Pazuchanics; D. W. Schmidt; Adelaida C. Valdez; C. H. Wilde; D. C. Wilson

The National Ignition Facility (NIF) is scheduled to begin deuterium-tritium (DT) shots possibly in the next several years. One of the important diagnostics in understanding capsule behavior and to guide changes in Hohlraum illumination, capsule design, and geometry will be neutron imaging of both the primary 14 MeV neutrons and the lower-energy downscattered neutrons in the 6-13 MeV range. The neutron imaging system (NIS) described here, which we are currently building for use on NIF, uses a precisely aligned set of apertures near the target to form the neutron images on a segmented scintillator. The images are recorded on a gated, intensified charge coupled device. Although the aperture set may be as close as 20 cm to the target, the imaging camera system will be located at a distance of 28 m from the target. At 28 m the camera system is outside the NIF building. Because of the distance and shielding, the imager will be able to obtain images with little background noise. The imager will be capable of imaging downscattered neutrons from failed capsules with yields Y(n)>10(14) neutrons. The shielding will also permit the NIS to function at neutron yields >10(18), which is in contrast to most other diagnostics that may not work at high neutron yields. The following describes the current NIF NIS design and compares the predicted performance with the NIF specifications that must be satisfied to generate images that can be interpreted to understand results of a particular shot. The current design, including the aperture, scintillator, camera system, and reconstruction methods, is briefly described. System modeling of the existing Omega NIS and comparison with the Omega data that guided the NIF design based on our Omega results is described. We will show NIS model calculations of the expected NIF images based on component evaluations at Omega. We will also compare the calculated NIF input images with those unfolded from the NIS images generated from our NIS numerical modeling code.


Physics of Plasmas | 2014

Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility

D. T. Casey; V. A. Smalyuk; Robert Tipton; J. Pino; Gary P. Grim; B. A. Remington; Dana P. Rowley; S. V. Weber; M. A. Barrios; L. R. Benedetti; D. L. Bleuel; E. Bond; David K. Bradley; J. A. Caggiano; D. A. Callahan; Charles Cerjan; K. C. Chen; D. H. Edgell; M. J. Edwards; D. N. Fittinghoff; J. A. Frenje; M. Gatu-Johnson; Vladimir Yu. Glebov; S. Glenn; N. Guler; S. W. Haan; Alex V. Hamza; R. Hatarik; H. W. Herrmann; D. Hoover

Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T2-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platf...


Physics of Plasmas | 2004

The influence of asymmetry on mix in direct-drive inertial confinement fusion experiments

Cindy R. Christensen; D. C. Wilson; Cris W. Barnes; Gary P. Grim; George L. Morgan; Mark D. Wilke; F. J. Marshall; V. Yu. Glebov; C. Stoeckl

The mix of shell material into the fuel of inertial confinement fusion (ICF) implosions is thought to be a major cause of the failure of most ICF experiments to achieve the fusion yield predicted by computer codes. Implosion asymmetry is a simple measurable quantity that is expected to affect the mix. In order to measure the coupling of asymmetry to mix in ICF implosions, we have performed experiments on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)] that vary the energy of each of the sixty beams individually to achieve a given fraction of L2, the second-order Legendre polynomial. Prolate, symmetric, and oblate implosions resulted. Three different fill pressures were used. Simultaneous x-ray and neutron images were obtained. The experiments were modeled with a radiation/hydrodynamics code using the multi-fluid interpenetration mix model of Scannapieco and Cheng. It fits the data well with a single value of its one adjustable parameter (0.07±0.01). This agreement is demonstrated ...


Review of Scientific Instruments | 2004

Progress on neutron pinhole imaging for inertial confinement fusion experiments

Gary P. Grim; George L. Morgan; Mark D. Wilke; Peter L. Gobby; Cindy R. Christensen; D. C. Wilson

Neutron imaging provides a powerful diagnostic for understanding the performance of inertial confinement fusion ignition capsules and the drive mechanism imploding them. To achieve the spatial resolution and fielding capability needed at the National Ignition Facility requires a staged approach that simultaneously pushes the limits of extant capabilities while developing new techniques that will extend to the National Ignition Facility regime. To this end, new pinhole assemblies have been designed and fabricated using very high-precision machining equipment. These assemblies have been fielded successfully at Laboratory for Laser Energetics, University of Rochester and have provided impetus for new aperture designs and new ideas for detectors, which are now the limiting element in the system resolution.


Review of Scientific Instruments | 2008

Prompt radiochemistry at the National Ignition Facility (invited).

Gary P. Grim; P. A. Bradley; T. A. Bredeweg; A. L. Keksis; M. M. Fowler; A. C. Hayes; G. Jungman; A. W. Obst; R. S. Rundberg; D. J. Vieira; J. B. Wilhelmy; Lee Allen Bernstein; Charles Cerjan; R. J. Fortner; K. J. Moody; D. Schneider; Dawn A. Shaughnessy; W. Stoeffl; M. A. Stoyer

Understanding mix in inertial confinement fusion (ICF) experiments at the National Ignition Facility requires the diagnosis of charged-particle reactions within an imploded target. Radiochemical diagnostics of these reactions are currently under study by scientists at Los Alamos and Lawrence Livermore National Laboratories. Measurement of these reactions requires assay of activated debris and tracer gases from the target. Presented below is an overview of the prompt radiochemistry diagnostic development efforts, including a discussion of the reactions of interest as well as the progress being made to collect and count activated material.


Fusion Science and Technology | 2016

The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012

J. D. Kilkenny; P. M. Bell; David K. Bradley; D. L. Bleuel; J. A. Caggiano; E. L. Dewald; W. W. Hsing; D. H. Kalantar; R. L. Kauffman; D. J. Larson; D. L. Moody; D. Schneider; M. B. Schneider; D. Shaughnessy; R. T. Shelton; W. Stoeffl; K. Widmann; C. B. Yeamans; S. H. Batha; Gary P. Grim; H. W. Herrmann; F. E. Merrill; R. J. Leeper; John A. Oertel; T. C. Sangster; D. H. Edgell; M. Hohenberger; V. Yu. Glebov; S. P. Regan; J. A. Frenje

Abstract At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by the function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova’s, new diagnostics are limited such as the higher-speed X-ray imager. Recommendations for future diagnostics on the NIF are discussed.


Review of Scientific Instruments | 2010

Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

E. N. Loomis; Gary P. Grim; C. H. Wilde; D. C. Wilson; G. L. Morgan; Mark D. Wilke; I.L. Tregillis; F. E. Merrill; Deborah J. Clark; J. Finch; D. N. Fittinghoff; Dan E. Bower

Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

Collaboration


Dive into the Gary P. Grim's collaboration.

Top Co-Authors

Avatar

C. H. Wilde

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

F. E. Merrill

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. C. Wilson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. N. Fittinghoff

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark D. Wilke

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Valerie E. Fatherley

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John A. Oertel

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

George L. Morgan

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I.L. Tregillis

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge