Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valerie E. Fatherley is active.

Publication


Featured researches published by Valerie E. Fatherley.


Review of Scientific Instruments | 2006

Gated x-ray detector for the National Ignition Facility

John A. Oertel; Robert Aragonez; Tom Archuleta; Cris W. Barnes; Larry J. Casper; Valerie E. Fatherley; Todd Heinrichs; Robert S. King; Doug Landers; F. E. Lopez; P. G. Sanchez; George Sandoval; L. S. Schrank; Peter J. Walsh; P. M. Bell; Matt Brown; R. Costa; J. P. Holder; Sam Montelongo; Neal R. Pederson

Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections.


Review of Scientific Instruments | 2008

TRIDENT high-energy-density facility experimental capabilities and diagnostics

S. H. Batha; Robert Aragonez; F. Archuleta; Tom Archuleta; J. F. Benage; J. A. Cobble; Joseph Cowan; Valerie E. Fatherley; K. A. Flippo; D. C. Gautier; R. P. Gonzales; Scott R. Greenfield; B. M. Hegelich; T. R. Hurry; R. P. Johnson; J. L. Kline; S. Letzring; E. N. Loomis; F. E. Lopez; S. N. Luo; D. S. Montgomery; John A. Oertel; Dennis L. Paisley; S.-M. Reid; P. G. Sanchez; Achim Seifter; T. Shimada; J. Workman

The newly upgraded TRIDENT high-energy-density (HED) facility provides high-energy short-pulse laser-matter interactions with powers in excess of 200 TW and energies greater than 120 J. In addition, TRIDENT retains two long-pulse (nanoseconds to microseconds) beams that are available for simultaneous use in either the same experiment or a separate one. The facilitys flexibility is enhanced by the presence of two separate target chambers with a third undergoing commissioning. This capability allows the experimental configuration to be optimized by choosing the chamber with the most advantageous geometry and features. The TRIDENT facility also provides a wide range of standard instruments including optical, x-ray, and particle diagnostics. In addition, one chamber has a 10 in. manipulator allowing OMEGA and National Ignition Facility (NIF) diagnostics to be prototyped and calibrated.


Review of Scientific Instruments | 2008

The National Ignition Facility Neutron Imaging System

Mark D. Wilke; S. H. Batha; P. A. Bradley; Robert D. Day; David D. Clark; Valerie E. Fatherley; Joshua P. Finch; R. Gallegos; Felix P. Garcia; Gary P. Grim; Steven A. Jaramillo; Andrew J. Montoya; Michael J. Moran; George L. Morgan; John A. Oertel; Thomas A. Ortiz; J. R. Payton; Peter Pazuchanics; D. W. Schmidt; Adelaida C. Valdez; C. H. Wilde; D. C. Wilson

The National Ignition Facility (NIF) is scheduled to begin deuterium-tritium (DT) shots possibly in the next several years. One of the important diagnostics in understanding capsule behavior and to guide changes in Hohlraum illumination, capsule design, and geometry will be neutron imaging of both the primary 14 MeV neutrons and the lower-energy downscattered neutrons in the 6-13 MeV range. The neutron imaging system (NIS) described here, which we are currently building for use on NIF, uses a precisely aligned set of apertures near the target to form the neutron images on a segmented scintillator. The images are recorded on a gated, intensified charge coupled device. Although the aperture set may be as close as 20 cm to the target, the imaging camera system will be located at a distance of 28 m from the target. At 28 m the camera system is outside the NIF building. Because of the distance and shielding, the imager will be able to obtain images with little background noise. The imager will be capable of imaging downscattered neutrons from failed capsules with yields Y(n)>10(14) neutrons. The shielding will also permit the NIS to function at neutron yields >10(18), which is in contrast to most other diagnostics that may not work at high neutron yields. The following describes the current NIF NIS design and compares the predicted performance with the NIF specifications that must be satisfied to generate images that can be interpreted to understand results of a particular shot. The current design, including the aperture, scintillator, camera system, and reconstruction methods, is briefly described. System modeling of the existing Omega NIS and comparison with the Omega data that guided the NIF design based on our Omega results is described. We will show NIS model calculations of the expected NIF images based on component evaluations at Omega. We will also compare the calculated NIF input images with those unfolded from the NIS images generated from our NIS numerical modeling code.


Review of Scientific Instruments | 2014

Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

Hartmut Herrmann; Y. Kim; C. S. Young; Valerie E. Fatherley; F. E. Lopez; John A. Oertel; Robert M. Malone; M. S. Rubery; C. J. Horsfield; W. Stoeffl; A. Zylstra; W. T. Shmayda; S. H. Batha

A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.


Review of Scientific Instruments | 2016

Combined neutron and x-ray imaging at the National Ignition Facility (invited)

C. R. Danly; K. Christensen; Valerie E. Fatherley; D. N. Fittinghoff; G. P. Grim; Robin L. Hibbard; N. Izumi; D. Jedlovec; F. E. Merrill; D. W. Schmidt; Raspberry Simpson; K. Skulina; Petr L. Volegov; C. H. Wilde

X-ray and neutrons are commonly used to image inertial confinement fusion implosions, providing key diagnostic information on the fuel assembly of burning deuterium-tritium (DT) fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occurs from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreased neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a combined neutron x-ray imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line of sight. This system is described, and initial results are presented along with prospects for definitive coregistration of the images.


Proceedings of SPIE | 2010

Design, assembly, and testing of the neutron imaging lens for the National Ignition Facility

Robert M. Malone; Brian C. Cox; Valerie E. Fatherley; Brent C. Frogget; Gary P. Grim; Morris I. Kaufman; Kevin D. McGillivray; John A. Oertel; Martin J. Palagi; William M. Skarda; Aric Tibbitts; C. H. Wilde; Mark D. Wilke

The National Ignition Facility will begin testing DT fuel capsules yielding greater than 1013 neutrons during 2010. Neutron imaging is an important diagnostic for understanding capsule behavior. Neutrons are imaged at a scintillator after passing through a pinhole. The pixelated, 160-mm square scintillator is made up of 1/4 mm diameter rods 50 mm long. Shielding and distance (28 m) are used to preserve the recording diagnostic hardware. Neutron imaging is light starved. We designed a large nine-element collecting lens to relay as much scintillator light as reasonable onto a 75 mm gated microchannel plate (MCP) intensifier. The image from the intensifiers phosphor passes through a fiber taper onto a CCD camera for digital storage. Alignment of the pinhole and tilting of the scintillator is performed before the relay lens and MCP can be aligned. Careful tilting of the scintillator is done so that each neutron only passes through one rod (no crosstalk allowed). The 3.2 ns decay time scintillator emits light in the deep blue, requiring special glass materials. The glass within the lens housing weighs 26 lbs, with the largest element being 7.7 inches in diameter. The distance between the scintillator and the MCP is only 27 inches. The scintillator emits light with 0.56 NA and the lens collects light at 0.15 NA. Thus, the MCP collects only 7% of the available light. Baffling the stray light is a major concern in the design of the optics. Glass cost considerations, tolerancing, and alignment of this lens system will be discussed.


Journal of Physics: Conference Series | 2008

Neutron imaging development for megajoule scale inertial confinement fusion experiments

Gary P. Grim; P. A. Bradley; Robert D. Day; David D. Clark; Valerie E. Fatherley; Joshua P. Finch; Felix P. Garcia; Steven A. Jaramillo; Andrew J. Montoya; G. L. Morgan; John A. Oertel; T. A. Ortiz; J. R. Payton; Peter Pazuchanics; D. W. Schmidt; Adelaida C. Valdez; C. H. Wilde; Mark D. Wilke; D. C. Wilson

Neutron imaging of Inertial Confinement Fusion (ICF) targets is useful for understanding the implosion conditions of deuterium and tritium filled targets at Mega-Joule/Tera-Watt scale laser facilities. The primary task for imaging ICF targets at the National Ignition Facility, Lawrence Livermore National Laboratory, Livermore CA, is to determine the asymmetry of the imploded target. The image data, along with other nuclear information, are to be used to provide insight into target drive conditions. The diagnostic goal at the National Ignition Facility is to provide neutron images with 10 μm resolution and peak signal-to-background values greater than 20 for neutron yields of ~ 1015. To achieve this requires signal multiplexing apertures with good resolution. In this paper we present results from imaging system development efforts aimed at achieving these requirements using neutron pinholes. The data were collected using directly driven ICF targets at the Omega Laser, University of Rochester, Rochester, NY., and include images collected from a 3 × 3 array of 15.5 μm pinholes. Combined images have peak signal-to-background values greater than 30 at neutron yields of ~ 1013.


Proceedings of SPIE | 2007

Neutron imaging for inertial confinement fusion experiments

Gary P. Grim; Robert D. Day; David D. Clark; Valerie E. Fatherley; Felix P. Garcia; Steven A. Jaramillo; Andrew J. Montoya; G. L. Morgan; John A. Oertel; T. A. Ortiz; J. R. Payton; Peter Pazuchanics; D. W. Schmidt; Adelaida C. Valdez; C. H. Wilde; Mark D. Wilke

Neutron imaging of Inertial Confinement Fusion (ICF) targets provides a powerful tool for understanding the implosion conditions of deuterium and tritium filled targets at Mega-Joule/Tera-Watt scale laser facilities. The primary purpose of imaging ICF targets at that National Ignition Facility (NIF), sited at Lawrence Livermore National Laboratory, Livermore, California, is to determine the asymmetry of the fuel in an imploded ICF target. The image data are then combined with other nuclear information to gain insight into the laser and radiation conditions used to drive the target. This information is requisite to understanding the physics of Inertial Confinement Fusion targets and provides a failure mode diagnostic used to optimize the conditions of experiments aimed at obtaining ignition. We present an overview of neutron aperture imaging including a discussion of image formation and reconstruction, requirements for the future (NIF) neutron imaging systems, a description of current imaging system capabilities, and ongoing work to affect imaging systems capable of meeting future system requirements.


Review of Scientific Instruments | 2016

Design of the polar neutron-imaging aperture for use at the National Ignition Facility

Valerie E. Fatherley; D. A. Barker; D. N. Fittinghoff; Robin L. Hibbard; J. I. Martinez; F. E. Merrill; John A. Oertel; D. W. Schmidt; Petr L. Volegov; C. H. Wilde

The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.


Review of Scientific Instruments | 2015

Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion.

Raspberry Simpson; K. Christensen; C. R. Danly; Valerie E. Fatherley; D. N. Fittinghoff; G. P. Grim; N. Izumi; D. Jedlovec; F. E. Merrill; Kenneth M. Skulina; Petr L. Volegov; C. H. Wilde

The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

Collaboration


Dive into the Valerie E. Fatherley's collaboration.

Top Co-Authors

Avatar

John A. Oertel

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. H. Wilde

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gary P. Grim

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. N. Fittinghoff

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

F. E. Merrill

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. R. Danly

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. H. Batha

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Petr L. Volegov

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David D. Clark

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. W. Schmidt

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge