Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary Peltz is active.

Publication


Featured researches published by Gary Peltz.


Nature Medicine | 2008

Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

Edy Y. Kim; John T. Battaile; Anand C. Patel; Yingjian You; Eugene Agapov; Mitchell H. Grayson; Loralyn A. Benoit; Derek E. Byers; Yael G. Alevy; Jennifer Tucker; Suzanne Swanson; Rose M. Tidwell; Jeffrey W. Tyner; Mario Castro; Deepika Polineni; G. Alexander Patterson; Reto A. Schwendener; John Allard; Gary Peltz; Michael J. Holtzman

To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of chronic lung disease with pathology that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after an infection with a common type of respiratory virus is cleared to only trace levels of noninfectious virus. Chronic inflammatory disease is generally thought to depend on an altered adaptive immune response. However, here we find that this type of disease arises independently of an adaptive immune response and is driven instead by interleukin-13 produced by macrophages that have been stimulated by CD1d-dependent T cell receptor–invariant natural killer T (NKT) cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a previously undescribed NKT cell–macrophage innate immune axis.


Nature Immunology | 2000

Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma

Christopher L. Karp; Andrew Grupe; Eric E. Schadt; Susan Ewart; Michelle Keane-Moore; Peter Cuomo; Jörg Köhl; Larry M. Wahl; Douglas Kuperman; Soren Germer; Dee Aud; Gary Peltz; Marsha Wills-Karp

The prevalence and severity of allergic asthma continue to rise, lending urgency to the search for environmental triggers and genetic substrates. Using microarray analysis of pulmonary gene expression and single nucleotide polymorphism–based genotyping, combined with quantitative trait locus analysis, we identified the gene encoding complement factor 5 (C5) as a susceptibility locus for allergen-induced airway hyperresponsiveness in a murine model of asthma. A deletion in the coding sequence of C5 leads to C5-deficiency and susceptibility. Interleukin 12 (IL-12) is able to prevent or reverse experimental allergic asthma. Blockade of the C5a receptor rendered human monocytes unable to produce IL-12, mimicking blunted IL-12 production by macrophages from C5-deficient mice and providing a mechanism for the regulation of susceptibility to asthma by C5. The role of complement in modulating susceptibility to asthma highlights the importance of immunoregulatory events at the interface of innate and adaptive immunity in disease pathogenesis.


Immunity | 2001

Evidence for an Interferon-Inducible Gene, Ifi202, in the Susceptibility to Systemic Lupus

Stephen J. Rozzo; John Allard; Divaker Choubey; Timothy J. Vyse; Shozo Izui; Gary Peltz; Brian L. Kotzin

The Nba2 locus is a major genetic contribution to disease susceptibility in the (NZB x NZW)F(1) mouse model of systemic lupus. We generated C57BL/6 mice congenic for this NZB locus, and these mice produced antinuclear autoantibodies characteristic of lupus. F(1) offspring of congenic and NZW mice developed high autoantibody levels and severe lupus nephritis similar to (NZB x NZW)F(1) mice. Expression profiling with oligonucleotide microarrays revealed only two differentially expressed genes, interferon-inducible genes Ifi202 and Ifi203, in congenic versus control mice, and both were within the Nba2 interval. Quantitative PCR localized increased Ifi202 expression to splenic B cells and non-T/non-B cells. These results, together with analyses of promoter region polymorphisms, strain distribution of expression, and effects on cell proliferation and apoptosis, implicate Ifi202 as a candidate gene for lupus.


Nature Medicine | 2012

Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity

Tuan Trang; Ruslan Dorfman; Shad B. Smith; Simon Beggs; Jennifer Ritchie; Jean Sebastien Austin; Dmitri V. Zaykin; Heather Vander Meulen; Michael Costigan; Teri A. Herbert; Merav Yarkoni-Abitbul; David Tichauer; Jessica Livneh; Edith Gershon; Ming Zheng; Keith Tan; Sally John; Gary D. Slade; Joanne M. Jordan; Clifford J. Woolf; Gary Peltz; William Maixner; Luda Diatchenko; Ze'ev Seltzer; Michael W. Salter; Jeffrey S. Mogil

Chronic pain is highly variable between individuals, as is the response to analgesics. Although much of the variability in chronic pain and analgesic response is heritable, an understanding of the genetic determinants underlying this variability is rudimentary. Here we show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X7Rs, which are members of the family of ionotropic ATP-gated receptors, have two distinct modes of function: they can function through their intrinsic cationic channel or by forming nonselective pores that are permeable to molecules with a mass of up to 900 Da. Using genome-wide linkage analyses, we discovered an association between nerve-injury–induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7 gene, such that mice in which P2X7Rs have impaired pore formation as a result of this mutation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Moreover, in two independent human chronic pain cohorts, a cohort with pain after mastectomy and a cohort with osteoarthritis, we observed a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2RX7. Our findings suggest that selectively targeting P2X7R pore formation may be a new strategy for individualizing the treatment of chronic pain.


PLOS Genetics | 2008

Plasminogen Alleles Influence Susceptibility to Invasive Aspergillosis

Aimee K. Zaas; Guochun Liao; Jason W. Chien; Clarice R. Weinberg; David Shore; Steven S. Giles; Kieren A. Marr; Jonathan Usuka; Lauranell H. Burch; Lalith Perera; John R. Perfect; Gary Peltz; David A. Schwartz

Invasive aspergillosis (IA) is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855) correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser) where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn) was also identified in the human homolog (PLG; Gene ID 5340). An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT) recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection.


Anesthesiology | 2006

A genetic analysis of opioid-induced hyperalgesia in mice.

De-Yong Liang; Guochun Liao; Jianmei Wang; Jonathan Usuka; Yingying Guo; Gary Peltz; J. David Clark

Background:Opioid-induced hyperalgesia (OIH) is a syndrome of increased sensitivity to noxious stimuli, seen after both the acute and chronic administration of opioids, that has been observed in humans and rodent models. This syndrome may reduce the clinical utility of opioids in treating acute and chronic pain. Methods:In these studies, the authors measured the propensity of 15 strains of inbred mice to develop mechanical manifestations of OIH. These data were subjected to in silico genetic analysis, which resulted in the association of haplotypic blocks within or near several known genes. Both pharmacologic agents and transgenic mice were used to confirm the functional association of the most strongly linked gene with OIH. Results:Both baseline mechanical nociceptive thresholds and the percentage changes in these thresholds after 4 days of morphine treatment were found to be highly strain dependent. The haplotypic blocks most strongly associated with the mechanical OIH data were located within the β2 adrenergic receptor gene (β2-AR). Using the selective β2-AR antagonist butoxamine, the authors observed a dose-dependent reversal of OIH. Furthermore, deletion of the β2-AR gene sharply reduced the mechanical allodynia present after morphine treatment in the wild-type mouse strain. Analysis of the associated β2-AR haplotypic block identified single nucleotide polymorphisms potentially explaining in part the strain specific differences in OIH. Conclusions:Genetic variants of the β2-AR gene seem to explain some part of the differences between various strains of mice to develop OIH. The association of this gene with OIH suggests specific pharmacologic strategies for reducing the impact of OIH on patients consuming opioids.


Biochemical and Biophysical Research Communications | 2008

Establishment of a humanized model of liver using NOD/Shi-scid IL2Rgnull mice

Hiroshi Suemizu; Masami Hasegawa; Kenji Kawai; Kenji Taniguchi; Makoto Monnai; Masatoshi Wakui; Makoto Suematsu; Mamoru Ito; Gary Peltz; Masato Nakamura

Severely immunodeficient NOD/Shi-scid IL2Rg(null) (NOG) mice are used as recipients for human tissue transplantation, which produces chimeric mice with various types of human tissue. NOG mice expressing transgenic urokinase-type plasminogen activator in the liver (uPA-NOG) were produced. Human hepatocytes injected into uPA-NOG mice repopulated the recipient livers with human cells. The uPA-NOG model has several advantages over previously produced chimeric mouse models of human liver: (1) the severely immunodeficient NOG background enables higher xenogeneic cell engraftment; (2) the absence of neonatal lethality enables mating of homozygotes, which increased the efficacy of homozygote production; and (3) donor xenogeneic human hepatocytes could be readily transplanted into young uPA-NOG mice, which provide easier surgical manipulation and improved recipient survival.


Immunological Reviews | 1991

A Role for CD4+ T-Cell Subsets Producing a Selective Pattern of Lymphokines in the Pathogenesis of Human Chronic Inflammatory and Allergic Diseases

Gary Peltz

Analysis of experimental animal models (van Eden et al. 1988, Acha-Orbea et al. 1988), as well as more limited data on certain human inflammatory diseases (Wucherpfennig et al. 1990, Moller et al. 1988), have emphasized the involvement of T cells expressing a restricted set of T-cell antigen receptor (TCR) variable region genes in the pathogenesis of inflammatory disease. The assumption underlying this paradigm is that the selective clonal expansion of T lymphocytes leads lo inflammatory disease. An important corrolary to this theory is that the TCR expressed on the pathogenic subset of T cells provides a specific target for pharmacologie treatment of the inflammatory disease (reviewed in Wraith et al. 1989, Hcber-Katz & Acha-Orbea 1989). The ability of TCR-specific reagents, including monoclonal antibodies binding a particular TCR V^ region (AchaOrbea et al. 1988, Urban et al. 1988) or nonstimulatory MHC binding peptides (Urban et al. 1989, Sakai ct al. 1989), to prevent tbe induction ofa prototypic T cell-mediated autoimmune disease, murine experimental allergic encephaiomyelitis, provides in vivo experimental support for this approach to immunotherapy.


Mbio | 2011

H5N1 Influenza Virus Pathogenesis in Genetically Diverse Mice Is Mediated at the Level of Viral Load

Adrianus C. M. Boon; David Finkelstein; Ming Zheng; Guochun Liao; John Allard; Klaus Klumpp; Robert G. Webster; Gary Peltz; Richard J. Webby

ABSTRACT The genotype of the host is one of several factors involved in the pathogenesis of an infectious disease and may be a key parameter in the epidemiology of highly pathogenic H5N1 influenza virus infection in humans. Gene polymorphisms may affect the viral replication rate or alter the host’s immune response to the virus. In humans, it is unclear which aspect dictates the severity of H5N1 virus disease. To identify the mechanism underlying differential responses to H5N1 virus infection in a genetically diverse population, we assessed the host responses and lung viral loads in 21 inbred mouse strains upon intranasal inoculation with A/Hong Kong/213/03 (H5N1). Resistant mouse strains survived large inocula while susceptible strains succumbed to infection with 1,000- to 10,000-fold-lower doses. Quantitative analysis of the viral load after inoculation with an intermediate dose found significant associations with lethality as early as 2 days postinoculation, earlier than any other disease indicator. The increased viral titers in the highly susceptible strains mediated a hyperinflamed environment, indicated by the distinct expression profiles and increased production of inflammatory mediators on day 3. Supporting the hypothesis that viral load rather than an inappropriate response to the virus was the key severity-determining factor, we performed quantitative real-time PCR measuring the cytokine/viral RNA ratio. No significant differences between susceptible and resistant mouse strains were detected, confirming that it is the host genetic component controlling viral load, and therefore replication dynamics, that is primarily responsible for a host’s susceptibility to a given H5N1 virus. IMPORTANCE Highly pathogenic H5N1 influenza virus has circulated in Southeast Asia since 2003 but has been confirmed in relatively few individuals. It has been postulated that host genetic polymorphisms increase the susceptibility to infection and severe disease. The mechanisms and host proteins affected during severe disease are unknown. Inbred mouse strains vary considerably in their ability to resist H5N1 virus and were used to identify the primary mechanism determining disease severity. After inoculation with H5N1, resistant mouse strains had reduced amounts of virus in their lungs, which subsequently resulted in lower production of proinflammatory mediators and less pathology. We therefore conclude that the host genetic component controlling disease severity is primarily influencing viral replication. This is an important concept, as it emphasizes the need to limit virus replication through antiviral therapies and it shows that the hyperinflammatory environment is simply a reflection of more viral genetic material inducing a response. Highly pathogenic H5N1 influenza virus has circulated in Southeast Asia since 2003 but has been confirmed in relatively few individuals. It has been postulated that host genetic polymorphisms increase the susceptibility to infection and severe disease. The mechanisms and host proteins affected during severe disease are unknown. Inbred mouse strains vary considerably in their ability to resist H5N1 virus and were used to identify the primary mechanism determining disease severity. After inoculation with H5N1, resistant mouse strains had reduced amounts of virus in their lungs, which subsequently resulted in lower production of proinflammatory mediators and less pathology. We therefore conclude that the host genetic component controlling disease severity is primarily influencing viral replication. This is an important concept, as it emphasizes the need to limit virus replication through antiviral therapies and it shows that the hyperinflammatory environment is simply a reflection of more viral genetic material inducing a response.


Pharmacogenetics and Genomics | 2009

From mouse to man : the 5-HT3 receptor modulates physical dependence on opioid narcotics

Larry F. Chu; De-Yong Liang; Xiangqi Li; Peyman Sahbaie; Nicole D'Arcy; Guochun Liao; Gary Peltz; J. David Clark

Objectives Addiction to opioid narcotics represents a major public health challenge. Animal models of one component of addiction, physical dependence, show this trait to be highly heritable. The analysis of opioid dependence using contemporary in-silico techniques offers an approach to discover novel treatments for dependence and addiction. Methods In these experiments, opioid withdrawal behavior in 18 inbred strains of mice was assessed. Mice were treated for 4 days with escalating doses of morphine before the administration of naloxone allowing the quantification of opioid dependence. After haplotypic analysis, experiments were designed to evaluate the top gene candidate as a modulator of physical dependence. Behavioral studies as well as measurements of gene expression on the mRNA and protein levels were completed. Finally, a human model of opioid dependence was used to quantify the effects of the 5-HT3 antagonist ondansetron on signs and symptoms of withdrawal. Results The Htr3a gene corresponding to the 5-HT3 receptor emerged as the leading candidate. Pharmacological studies using the selective 5-HT3 antagonist ondansetron supported the link in mice. Morphine strongly regulated the expression of the Htr3a gene in various central nervous system regions including the amygdala, dorsal raphe, and periaqueductal gray nuclei, which have been linked to opioid dependence in previous studies. Using an acute morphine administration model, the role of 5-HT3 in controlling the objective signs of withdrawal in humans was confirmed. Conclusion These studies show the power of in-silico genetic mapping, and reveal a novel target for treating an important component of opioid addiction.

Collaboration


Dive into the Gary Peltz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge