Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guochun Liao is active.

Publication


Featured researches published by Guochun Liao.


PLOS Genetics | 2008

Plasminogen Alleles Influence Susceptibility to Invasive Aspergillosis

Aimee K. Zaas; Guochun Liao; Jason W. Chien; Clarice R. Weinberg; David Shore; Steven S. Giles; Kieren A. Marr; Jonathan Usuka; Lauranell H. Burch; Lalith Perera; John R. Perfect; Gary Peltz; David A. Schwartz

Invasive aspergillosis (IA) is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855) correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser) where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn) was also identified in the human homolog (PLG; Gene ID 5340). An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT) recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection.


Anesthesiology | 2006

A genetic analysis of opioid-induced hyperalgesia in mice.

De-Yong Liang; Guochun Liao; Jianmei Wang; Jonathan Usuka; Yingying Guo; Gary Peltz; J. David Clark

Background:Opioid-induced hyperalgesia (OIH) is a syndrome of increased sensitivity to noxious stimuli, seen after both the acute and chronic administration of opioids, that has been observed in humans and rodent models. This syndrome may reduce the clinical utility of opioids in treating acute and chronic pain. Methods:In these studies, the authors measured the propensity of 15 strains of inbred mice to develop mechanical manifestations of OIH. These data were subjected to in silico genetic analysis, which resulted in the association of haplotypic blocks within or near several known genes. Both pharmacologic agents and transgenic mice were used to confirm the functional association of the most strongly linked gene with OIH. Results:Both baseline mechanical nociceptive thresholds and the percentage changes in these thresholds after 4 days of morphine treatment were found to be highly strain dependent. The haplotypic blocks most strongly associated with the mechanical OIH data were located within the β2 adrenergic receptor gene (β2-AR). Using the selective β2-AR antagonist butoxamine, the authors observed a dose-dependent reversal of OIH. Furthermore, deletion of the β2-AR gene sharply reduced the mechanical allodynia present after morphine treatment in the wild-type mouse strain. Analysis of the associated β2-AR haplotypic block identified single nucleotide polymorphisms potentially explaining in part the strain specific differences in OIH. Conclusions:Genetic variants of the β2-AR gene seem to explain some part of the differences between various strains of mice to develop OIH. The association of this gene with OIH suggests specific pharmacologic strategies for reducing the impact of OIH on patients consuming opioids.


Mbio | 2011

H5N1 Influenza Virus Pathogenesis in Genetically Diverse Mice Is Mediated at the Level of Viral Load

Adrianus C. M. Boon; David Finkelstein; Ming Zheng; Guochun Liao; John Allard; Klaus Klumpp; Robert G. Webster; Gary Peltz; Richard J. Webby

ABSTRACT The genotype of the host is one of several factors involved in the pathogenesis of an infectious disease and may be a key parameter in the epidemiology of highly pathogenic H5N1 influenza virus infection in humans. Gene polymorphisms may affect the viral replication rate or alter the host’s immune response to the virus. In humans, it is unclear which aspect dictates the severity of H5N1 virus disease. To identify the mechanism underlying differential responses to H5N1 virus infection in a genetically diverse population, we assessed the host responses and lung viral loads in 21 inbred mouse strains upon intranasal inoculation with A/Hong Kong/213/03 (H5N1). Resistant mouse strains survived large inocula while susceptible strains succumbed to infection with 1,000- to 10,000-fold-lower doses. Quantitative analysis of the viral load after inoculation with an intermediate dose found significant associations with lethality as early as 2 days postinoculation, earlier than any other disease indicator. The increased viral titers in the highly susceptible strains mediated a hyperinflamed environment, indicated by the distinct expression profiles and increased production of inflammatory mediators on day 3. Supporting the hypothesis that viral load rather than an inappropriate response to the virus was the key severity-determining factor, we performed quantitative real-time PCR measuring the cytokine/viral RNA ratio. No significant differences between susceptible and resistant mouse strains were detected, confirming that it is the host genetic component controlling viral load, and therefore replication dynamics, that is primarily responsible for a host’s susceptibility to a given H5N1 virus. IMPORTANCE Highly pathogenic H5N1 influenza virus has circulated in Southeast Asia since 2003 but has been confirmed in relatively few individuals. It has been postulated that host genetic polymorphisms increase the susceptibility to infection and severe disease. The mechanisms and host proteins affected during severe disease are unknown. Inbred mouse strains vary considerably in their ability to resist H5N1 virus and were used to identify the primary mechanism determining disease severity. After inoculation with H5N1, resistant mouse strains had reduced amounts of virus in their lungs, which subsequently resulted in lower production of proinflammatory mediators and less pathology. We therefore conclude that the host genetic component controlling disease severity is primarily influencing viral replication. This is an important concept, as it emphasizes the need to limit virus replication through antiviral therapies and it shows that the hyperinflammatory environment is simply a reflection of more viral genetic material inducing a response. Highly pathogenic H5N1 influenza virus has circulated in Southeast Asia since 2003 but has been confirmed in relatively few individuals. It has been postulated that host genetic polymorphisms increase the susceptibility to infection and severe disease. The mechanisms and host proteins affected during severe disease are unknown. Inbred mouse strains vary considerably in their ability to resist H5N1 virus and were used to identify the primary mechanism determining disease severity. After inoculation with H5N1, resistant mouse strains had reduced amounts of virus in their lungs, which subsequently resulted in lower production of proinflammatory mediators and less pathology. We therefore conclude that the host genetic component controlling disease severity is primarily influencing viral replication. This is an important concept, as it emphasizes the need to limit virus replication through antiviral therapies and it shows that the hyperinflammatory environment is simply a reflection of more viral genetic material inducing a response.


Pharmacogenetics and Genomics | 2009

From mouse to man : the 5-HT3 receptor modulates physical dependence on opioid narcotics

Larry F. Chu; De-Yong Liang; Xiangqi Li; Peyman Sahbaie; Nicole D'Arcy; Guochun Liao; Gary Peltz; J. David Clark

Objectives Addiction to opioid narcotics represents a major public health challenge. Animal models of one component of addiction, physical dependence, show this trait to be highly heritable. The analysis of opioid dependence using contemporary in-silico techniques offers an approach to discover novel treatments for dependence and addiction. Methods In these experiments, opioid withdrawal behavior in 18 inbred strains of mice was assessed. Mice were treated for 4 days with escalating doses of morphine before the administration of naloxone allowing the quantification of opioid dependence. After haplotypic analysis, experiments were designed to evaluate the top gene candidate as a modulator of physical dependence. Behavioral studies as well as measurements of gene expression on the mRNA and protein levels were completed. Finally, a human model of opioid dependence was used to quantify the effects of the 5-HT3 antagonist ondansetron on signs and symptoms of withdrawal. Results The Htr3a gene corresponding to the 5-HT3 receptor emerged as the leading candidate. Pharmacological studies using the selective 5-HT3 antagonist ondansetron supported the link in mice. Morphine strongly regulated the expression of the Htr3a gene in various central nervous system regions including the amygdala, dorsal raphe, and periaqueductal gray nuclei, which have been linked to opioid dependence in previous studies. Using an acute morphine administration model, the role of 5-HT3 in controlling the objective signs of withdrawal in humans was confirmed. Conclusion These studies show the power of in-silico genetic mapping, and reveal a novel target for treating an important component of opioid addiction.


Nature Biotechnology | 2006

In silico pharmacogenetics of warfarin metabolism

Yingying Guo; Paul Weller; Erin Farrell; Paul Cheung; Bill Fitch; Douglas S. Clark; Shao-Yong Wu; Jianmei Wang; Guochun Liao; Zhaomei Zhang; John Allard; Janet Cheng; Anh Nguyen; Sharon Jiang; Steve Shafer; Jonathan Usuka; Mohammad R. Masjedizadeh; Gary Peltz

Pharmacogenetic approaches can be instrumental for predicting individual differences in response to a therapeutic intervention. Here we used a recently developed murine haplotype-based computational method to identify a genetic factor regulating the metabolism of warfarin, a commonly prescribed anticoagulant with a narrow therapeutic index and a large variation in individual dosing. After quantification of warfarin and nine of its metabolites in plasma from 13 inbred mouse strains, we correlated strain-specific differences in 7-hydroxywarfarin accumulation with genetic variation within a chromosomal region encoding cytochrome P450 2C (Cyp2c) enzymes. This computational prediction was experimentally confirmed by showing that the rate-limiting step in biotransformation of warfarin to its 7-hydroxylated metabolite was inhibited by tolbutamide, a Cyp2c isoform-specific substrate, and that this transformation was mediated by expressed recombinant Cyp2c29. We show that genetic variants responsible for interindividual pharmacokinetic differences in drug metabolism can be identified by computational genetic analysis in mice.


Pain | 2006

Chronic pain and genetic background interact and influence opioid analgesia, tolerance, and physical dependence

De-Yong Liang; TianZi Guo; Guochun Liao; Wade S. Kingery; Gary Peltz; J. David Clark

Abstract Opioids are commonly used in the treatment of moderate to severe pain. However, their chronic use is limited by analgesic tolerance and physical dependence. Few studies have examined how chronic pain affects the development of tolerance or dependence, and essentially no studies have looked at the role of both genetics and pain together. For these studies we used 12 strains of inbred mice. Groups of mice from each strain were tested at baseline for morphine analgesic sensitivity, mechanical nociceptive threshold, and thermal nociceptive threshold. Mice were then given morphine in a 4‐day escalating morphine administration paradigm followed by reassessment of the morphine dose–response relationship. Finally, physical dependence was measured by administering naloxone. Parallel groups of mice underwent hind paw injection of complete Freund’s adjuvant (CFA) to induce chronic hind paw inflammation 7 days prior to the beginning of testing. The data showed that CFA treatment tended to lower baseline ED50 values for morphine and enhanced the degree of analgesic tolerance observed after 4 days of morphine treatment. In addition, the degree of jumping behavior indicative of physical dependence was often altered if mice had been treated with CFA. The influence of background strain was substantial for all traits measured. In silico haplotypic mapping of the tolerance and physical dependence data demonstrated that CFA pretreatment altered the pattern of the predicted associations and greatly reduced their statistical significance. We conclude that chronic inflammatory pain and genetics interact to modulate the analgesic potency of morphine, tolerance, and physical dependence.


Pharmacogenomics Journal | 2011

In silico and in vitro pharmacogenetics: aldehyde oxidase rapidly metabolizes a p38 kinase inhibitor

Xun Zhang; Liu Hh; Peter F. Weller; Ming Zheng; Tao W; Jianmei Wang; Guochun Liao; Mario Monshouwer; Gary Peltz

The clinical development of a candidate p38 kinase inhibitor was terminated because of its unexpectedly rapid clearance in human subjects. Its short half-life and metabolic profile in human beings were vastly different from that in rats, dogs, and monkeys characterized during routine pre-clinical studies. Mice generated the predominant drug (4-hydroxylated) metabolite produced in human beings, which was not found in other species. The data from a murine in vitro drug biotransformation assay that used liver extracts from 14 inbred mouse strains were analyzed by haplotype-based computational genetic analysis. This led to the identification of aldehyde oxidase-1 (AOX1) as the enzyme responsible for the rapid metabolism of this drug. Specific enzyme inhibitors and expressed recombinant enzymes were used to confirm that AOX catalyzed the formation of the 4-hydroxylated drug metabolite in mouse and man. Genetic variation within Aox1 regulated the level of hepatic Aox1 mRNA, AOX1 protein, and enzyme activity among the inbred strains. Thus, computational murine pharmacogenetic analysis can facilitate the identification and characterization of drug metabolism pathways that are differentially utilized by humans and other species.


Proceedings of the National Academy of Sciences of the United States of America | 2007

In silico and in vitro pharmacogenetic analysis in mice

Yingying Guo; Peng Lu; Erin Farrell; Xun Zhang; Paul Weller; Mario Monshouwer; Jianmei Wang; Guochun Liao; Zhaomei Zhang; Steven Hu; John Allard; Steve Shafer; Jonathan Usuka; Gary Peltz

Combining the experimental efficiency of a murine hepatic in vitro drug biotransformation system with in silico genetic analysis produces a model system that can rapidly analyze interindividual differences in drug metabolism. This model system was tested by using two clinically important drugs, testosterone and irinotecan, whose metabolism was previously well characterized. The metabolites produced after these drugs were incubated with hepatic in vitro biotransformation systems prepared from the 15 inbred mouse strains were measured. Strain-specific differences in the rate of 16α-hydroxytestosterone generation and irinotecan glucuronidation correlated with the pattern of genetic variation within Cyp2b9 and Ugt1a loci, respectively. These computational predictions were experimentally confirmed using expressed recombinant enzymes. The genetic changes affecting irinotecan metabolism in mice mirrored those in humans that are known to affect the pharmacokinetics and incidence of adverse responses to this medication.


Proceedings of the National Academy of Sciences of the United States of America | 2015

High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein.

Klaus Klumpp; Angela M. Lam; Christine Lukacs; Robert L. Vogel; Suping Ren; Christine Espiritu; Ruth Baydo; Kateri Atkins; Jan Abendroth; Guochun Liao; Andrey Efimov; George D. Hartman; Osvaldo A. Flores

Significance A high-resolution structure was obtained for a drug candidate achieving pharmacological activity by inducing and stabilizing protein–protein interaction, a mechanism difficult to study in structural biology. We found that with poorly diffracting protein crystals, a protein stabilizing compound can improve crystal quality and enable the acquisition of a high-resolution structure. It also becomes apparent from this structure how improvements in pharmacologic potency can be achieved by improving protein–protein interaction stabilization and clear avenues for compound optimization are apparent from the data. The binding site observed in crystallography was biologically validated by mutational analysis, which also provides for the first time, to our knowledge, an understanding of a pathway by which viable, drug resistant virus variants may evolve against this drug class. The hepatitis B virus (HBV) core protein is essential for HBV replication and an important target for antiviral drug discovery. We report the first, to our knowledge, high-resolution crystal structure of an antiviral compound bound to the HBV core protein. The compound NVR-010–001-E2 can induce assembly of the HBV core wild-type and Y132A mutant proteins and thermostabilize the proteins with a Tm increase of more than 10 °C. NVR-010–001-E2 binds at the dimer–dimer interface of the core proteins, forms a new interaction surface promoting protein–protein interaction, induces protein assembly, and increases stability. The impact of naturally occurring core protein mutations on antiviral activity correlates with NVR-010–001-E2 binding interactions determined by crystallography. The crystal structure provides understanding of a drug efficacy mechanism related to the induction and stabilization of protein–protein interactions and enables structure-guided design to improve antiviral potency and drug-like properties.


Pharmacogenetics and Genomics | 2008

Quantitative trait locus and computational mapping identifies Kcnj9 (GIRK3) as a candidate gene affecting analgesia from multiple drug classes

Shad B. Smith; Cheryl L. Marker; Cydne Perry; Guochun Liao; Susana G. Sotocinal; Jean Sebastien Austin; Kara Melmed; J. David Clark; Gary Peltz; Kevin Wickman; Jeffrey S. Mogil

Aims Interindividual differences in analgesic drug response complicate the clinical management of pain. We aimed to identify genetic factors responsible for variable sensitivity to analgesic drugs of disparate neurochemical classes. Methods and results Quantitative trait locus mapping in 872 (C57BL/6×129P3)F2 mice was used to identify genetic factors contributing to variability in the analgesic effect of opioid (morphine), &agr;2-adrenergic (clonidine), and cannabinoid (WIN55,212-2) drugs against thermal nociception. A region on distal chromosome 1 showing significant linkage to analgesia from all three drugs was identified. Computational (in silico) genetic analysis of analgesic responses measured in a panel of inbred strains identified a haplotype block within this region containing the Kcnj9 and Kcnj10 genes, encoding the Kir3.3 (GIRK3) and Kir4.1 inwardly rectifying potassium channel subunits. The genes are differentially expressed in the midbrain periaqueductal gray of 129P3 versus C57BL/6 mice, owing to cis-acting genetic elements. The potential role of Kcnj9 was confirmed by the demonstration that knockout mice have attenuated analgesic responses. Conclusion A single locus is partially responsible for the genetic mediation of pain inhibition, and genetic variation associated with the potassium channel gene, Kcnj9, is a prime candidate for explaining the variable response to these analgesic drugs.

Collaboration


Dive into the Guochun Liao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge