Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary S. Russo is active.

Publication


Featured researches published by Gary S. Russo.


Experimental Neurology | 2009

Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation

Svjetlana Miocinovic; Scott F. Lempka; Gary S. Russo; Christopher B. Maks; Christopher R. Butson; Ken Sakaie; Jerrold L. Vitek; Cameron C. McIntyre

Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinsons disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system.


Journal of Neurophysiology | 2008

Deep Brain Stimulation Reduces Neuronal Entropy in the MPTP-Primate Model of Parkinson's Disease

Alan D. Dorval; Gary S. Russo; Takao Hashimoto; Weidong Xu; Warren M. Grill; Jerrold L. Vitek

High-frequency stimulation (HFS) of the subthalamic nucleus (STN) or internal segment of the globus pallidus is a clinically successful treatment for the motor symptoms of Parkinsons disease. However, the mechanisms by which HFS alleviates these symptoms are not understood. Whereas initial studies focused on HFS-induced changes in neuronal firing rates, recent studies suggest that changes in patterns of neuronal activity may correlate with symptom alleviation. We hypothesized that effective STN HFS reduces the disorder of neuronal firing patterns in the basal ganglia thalamic circuit, minimizing the pathological activity associated with parkinsonism. Stimulating leads were implanted in the STN of two rhesus monkeys rendered parkinsonian by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Action potentials were recorded from neurons of the internal and external globus pallidus and the motor thalamus (ventralis anterior, ventralis lateralis pars oralis, and ventralis posterior lateralis pars oralis) during HFS that reduced motor symptoms and during clinically ineffective low-frequency stimulation (LFS). Firing pattern entropy was calculated from the recorded spike times to quantify the disorder of the neuronal activity. The firing pattern entropy of neurons within each region of the pallidum and motor thalamus decreased in response to HFS (n > or = 18 and P < or = 0.02 in each region), whereas firing rate changes were specific to pallidal neurons only. In response to LFS, firing rates were unchanged, but firing pattern entropy increased throughout the circuit (n > or = 24 and P < or = 10(-4) in each region). These data suggest that the clinical effectiveness of HFS is correlated with, and potentially mediated by, a regularization of the pattern of neuronal activity throughout the basal ganglia thalamic circuit.


The Journal of Neuroscience | 2008

Subthalamic Nucleus Stimulation Modulates Thalamic Neuronal Activity

Weidong Xu; Gary S. Russo; Takao Hashimoto; Jianyu Zhang; Jerrold L. Vitek

Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is an effective tool for the treatment of advanced Parkinsons disease. The mechanism by which STN DBS elicits its beneficial effect, however, remains unclear. We previously reported STN stimulation increased the rate and produced a more regular and periodic pattern of neuronal activity in the internal segment of the globus pallidus (GPi). Here we extend our observations to neurons in the pallidal [ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)] and cerebellar [ventralis lateralis posterior pars oralis (VPLo)] receiving areas of the motor thalamus during STN DBS. Stimulation parameters that produced improvement in rigidity and bradykinesia resulted in changes in the pattern and power of oscillatory activity of neuronal activity that were similar in both regions of the motor thalamus. Neurons in both VA/VLo and VPLo tended to become more periodic and regular with a shift in oscillatory activity from low to high frequencies. Burst activity was reduced in VA/VLo, but was not significantly changed in VPLo. There was also a significant shift in the population of VA/VLo neurons that were inhibited during STN DBS, whereas VPLo neurons tended to be activated. These data are consistent with the hypothesis that STN DBS increases output from the nucleus and produces a change in the pattern and periodicity of neuronal activity in the basal ganglia thalamic network, and that these changes include cerebellar pathways likely via activation of adjacent cerebello-thalamic fiber bundles.


Experimental Neurology | 2008

Pallidal burst activity during therapeutic deep brain stimulation

Philip J. Hahn; Gary S. Russo; Taka Hashimoto; Svjetlana Miocinovic; Weidong Xu; Cameron C. McIntyre; Jerrold L. Vitek

Theoretical and experimental analyses of deep brain stimulation (DBS) in the subthalamic nucleus (STN) show both excitatory and inhibitory effects on the neural elements surrounding the electrode. Given these observations, the mechanism underlying the therapeutic effect of STN DBS on parkinsonian motor signs remains under debate. One hypothesis suggests that abnormal levels of bursting activity in the pallidum play a key role in the development of parkinsonian motor signs and that STN DBS may exert its beneficial effect by modifying this type of activity. We quantified the changes in bursting activity of globus pallidus internus (GPi) and externus (GPe) neurons before and during ineffective (subtherapeutic) and effective (therapeutic) STN DBS in two monkeys rendered parkinsonian by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Compared to pre-stimulation control values, the population mean firing rate increased during therapeutic stimulation significantly in both GPe (from 41.7 Hz+/-2.8 to 71.4 Hz+/-7.8) and GPi (from 58.8 Hz+/-4.2 to 71.5 Hz+/-6.2). The burst rate, however, increased significantly in GPe (from 80.1 bursts/min+/-10.0 to 103.1 bursts/min+/-11.1) and decreased significantly in GPi (from 104.2 bursts/min+/-8.3 to 75.8 bursts/min+/-10.8). Although both animals showed improvement in parkinsonian motor signs, changes in rate and bursting activity in GPi were significant only in one animal. These data suggest that while changes in rate and bursting activity may contribute to the improvement in PD motor signs during STN DBS, one cannot explain the therapeutic effects of stimulation in all cases solely on changes in these parameters. Other physiological changes that contribute to its therapeutic effect must also occur.


Journal of Neuroscience Methods | 2007

Stereotactic neurosurgical planning, recording, and visualization for deep brain stimulation in non-human primates

Svjetlana Miocinovic; Jianyu Zhang; Weidong Xu; Gary S. Russo; Jerrold L. Vitek; Cameron C. McIntyre

Methodologies for stereotactic neurosurgery and neurophysiological microelectrode recordings (MER) in non-human primate research typically rely on brain atlases that are not customized to the individual animal, and require paper records of MER data. To address these limitations, we developed a software tool (Cicerone) that enables simultaneous interactive 3D visualization of the neuroanatomy, neurophysiology, and neurostimulation data pertinent to deep brain stimulation (DBS) research studies in non-human primates. Cicerone allows for analysis of co-registered magnetic resonance images (MRI), computed tomography (CT) scans, 3D brain atlases, MER data, and DBS electrode(s) with predictions of the volume of tissue activated (VTA) as a function of the stimulation parameters. We used Cicerone to aid the implantation of DBS electrodes in two parkinsonian rhesus macaques, targeting the subthalamic nucleus in one monkey and the globus pallidus in the other. Cicerone correctly predicted the anatomical position of 79% and 73% of neurophysiologically defined MER sites in the two animals, respectively. In contrast, traditional 2D print atlases achieved 61% and 48% accuracy. Our experience suggests that Cicerone can improve anatomical targeting, enhance electrophysiological data visualization, and augment the design of stimulation experiments.


Experimental Neurology | 2012

External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network

Jerrold L. Vitek; Jianyu Zhang; Takao Hashimoto; Gary S. Russo; Kenneth B. Baker

Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN) are effective for the treatment of advanced Parkinsons disease (PD). We have shown previously that DBS of the external segment of the globus pallidus (GPe) is associated with improvements in parkinsonian motor signs; however, the mechanism of this effect is not known. In this study, we extend our findings on the effect of STN and GPi DBS on neuronal activity in the basal ganglia thalamic network to include GPe DBS using the 1-methyl-4-phenyl-1.2.3.6-tetrahydropyridine (MPTP) monkey model. Stimulation parameters that improved bradykinesia were associated with changes in the pattern and mean discharge rate of neuronal activity in the GPi, STN, and the pallidal [ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)] and cerebellar [ventralis lateralis posterior pars oralis (VPLo)] receiving areas of the motor thalamus. Population post-stimulation time histograms revealed a complex pattern of stimulation-related inhibition and excitation for the GPi and VA/VLo, with a more consistent pattern of inhibition in STN and excitation in VPLo. Mean discharge rate was reduced in the GPi and STN and increased in the VPLo. Effective GPe DBS also reduced bursting in the STN and GPi. These data support the hypothesis that therapeutic DBS activates output from the stimulated structure and changes the temporal pattern of neuronal activity throughout the basal ganglia thalamic network and provide further support for GPe as a potential therapeutic target for DBS in the treatment of PD.


Experimental Neurology | 2010

Somatotopic organization in the internal segment of the globus pallidus in Parkinson's disease

Kenneth B. Baker; John Y. K. Lee; Gaurav Mavinkurve; Gary S. Russo; Benjamin L. Walter; Mahlon R. DeLong; Roy A. E. Bakay; Jerrold L. Vitek

Ablation or deep brain stimulation in the internal segment of the globus pallidus (GPi) is an effective therapy for the treatment of Parkinsons disease (PD). Yet many patients receive only partial benefit, including varying levels of improvement across different body regions, which may relate to a differential effect of GPi surgery on the different body regions. Unfortunately, our understanding of the somatotopic organization of human GPi is based on a small number of studies with limited sample sizes, including several based upon only a single recording track or plane. To fully address the three-dimensional somatotopic organization of GPi, we examined the receptive field properties of pallidal neurons in a large cohort of patients undergoing stereotactic surgery. The response of neurons to active and passive movements of the limbs and orofacial structures was determined, using a minimum of three tracks across at least two medial-lateral planes. Neurons (3183) were evaluated from 299 patients, of which 1972 (62%) were modulated by sensorimotor manipulation. Of these, 1767 responded to a single, contralateral body region, with the remaining 205 responding to multiple and/or ipsilateral body regions. Leg-related neurons were found dorsal, medial and anterior to arm-related neurons, while arm-related neurons were dorsal and lateral to orofacial-related neurons. This study provides a more detailed map of individual body regions as well as specific joints within each region and provides a potential explanation for the differential effect of lesions or DBS of the GPi on different body parts in patients undergoing surgical treatment of movement disorders.


Experimental Neurology | 2006

Lesions in monkey globus pallidus externus exacerbate parkinsonian symptoms.

Jianyu Zhang; Gary S. Russo; Klaus Mewes; David B. Rye; Jerrold L. Vitek

To further define the role of the external segment of the globus pallidus (GPe) in the development of parkinsonian motor signs, two rhesus monkeys were made parkinsonian with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Behavioral assessments of bradykinesia and akinesia as well as single neuron recordings in the internal segment of the globus pallidus (GPi) were performed in both monkeys before and after ablating the sensorimotor portion of GPe. The effects of apomorphine on behavior and neuronal activity were also assessed in the parkinsonian monkeys before and after GPe ablation. We found that lesions in GPe exacerbated parkinsonian symptoms, altered neuronal activity in GPi, and reduced the therapeutic effects of apomorphine. These results support the hypothesis that GPe can influence GPi neuronal activity and is directly involved in parkinsonism. In addition, these data suggest that the inclusion of GPe in pallidotomy lesions for the treatment of Parkinsons disease can block the beneficial effects of antiparkinsonian medications and should be avoided.


Journal of Neurophysiology | 2006

Computational Analysis of Subthalamic Nucleus and Lenticular Fasciculus Activation During Therapeutic Deep Brain Stimulation

Svjetlana Miocinovic; Martin Parent; Christopher R. Butson; Philip J. Hahn; Gary S. Russo; Jerrold L. Vitek; Cameron C. McIntyre


Journal of Neurophysiology | 1993

Effect of eye position within the orbit on electrically elicited saccadic eye movements: a comparison of the macaque monkey's frontal and supplementary eye fields

Gary S. Russo; Charles J. Bruce

Collaboration


Dive into the Gary S. Russo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianyu Zhang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge