Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerrold L. Vitek is active.

Publication


Featured researches published by Jerrold L. Vitek.


Clinical Neurophysiology | 2004

Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both.

Cameron C. McIntyre; Marc Savasta; Lydia Kerkerian-Le Goff; Jerrold L. Vitek

High-frequency deep brain stimulation (DBS) of the thalamus or basal ganglia represents an effective clinical technique for the treatment of several medically refractory movement disorders. However, understanding of the mechanisms responsible for the therapeutic action of DBS remains elusive. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS. Four general hypotheses have been developed to explain the mechanism(s) of DBS: depolarization blockade, synaptic inhibition, synaptic depression, and stimulation-induced modulation of pathological network activity. Using the results from functional imaging, neurochemistry, neural recording, and neural modeling experiments we address the general hypotheses and attempt to reconcile what have been considered conflicting results from these different research modalities. Our analysis suggests stimulation-induced modulation of pathological network activity represents the most likely mechanism of DBS; however, several open questions remain to explicitly link the effects of DBS with therapeutic outcomes.


JAMA Neurology | 2011

Deep Brain Stimulation for Parkinson Disease: An Expert Consensus and Review of Key Issues

Jeff M. Bronstein; Michele Tagliati; Ron L. Alterman; Andres M. Lozano; Jens Volkmann; Alessandro Stefani; Fay B. Horak; Michael S. Okun; Kelly D. Foote; Paul Krack; Rajesh Pahwa; Jaimie M. Henderson; Marwan Hariz; Roy A. E. Bakay; Ali R. Rezai; William J. Marks; Elena Moro; Jerrold L. Vitek; Frances M. Weaver; Robert E. Gross; Mahlon R. DeLong

OBJECTIVE To provide recommendations to patients, physicians, and other health care providers on several issues involving deep brain stimulation (DBS) for Parkinson disease (PD). DATA SOURCES AND STUDY SELECTION An international consortium of experts organized, reviewed the literature, and attended the workshop. Topics were introduced at the workshop, followed by group discussion. DATA EXTRACTION AND SYNTHESIS A draft of a consensus statement was presented and further edited after plenary debate. The final statements were agreed on by all members. CONCLUSIONS (1) Patients with PD without significant active cognitive or psychiatric problems who have medically intractable motor fluctuations, intractable tremor, or intolerance of medication adverse effects are good candidates for DBS. (2) Deep brain stimulation surgery is best performed by an experienced neurosurgeon with expertise in stereotactic neurosurgery who is working as part of a interprofessional team. (3) Surgical complication rates are extremely variable, with infection being the most commonly reported complication of DBS. (4) Deep brain stimulation programming is best accomplished by a highly trained clinician and can take 3 to 6 months to obtain optimal results. (5) Deep brain stimulation improves levodopa-responsive symptoms, dyskinesia, and tremor; benefits seem to be long-lasting in many motor domains. (6) Subthalamic nuclei DBS may be complicated by increased depression, apathy, impulsivity, worsened verbal fluency, and executive dysfunction in a subset of patients. (7) Both globus pallidus pars interna and subthalamic nuclei DBS have been shown to be effective in addressing the motor symptoms of PD. (8) Ablative therapy is still an effective alternative and should be considered in a select group of appropriate patients.


Annals of Neurology | 1999

Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus

Jerrold L. Vitek; Vijay Chockkan; Jianyu Zhang; Yoshiki Kaneoke; Marion Evatt; Mahlon R. DeLong; Shirley Triche; Klaus Mewes; Takao Hashimoto; Roy A. E. Bakay

Microelectrode recording was performed in the basal ganglia of 3 patients with generalized dystonia and 1 patient with hemiballismus secondary to a brainstem hemorrhage. Neuronal activity was recorded from the internal and external segments of the globus pallidus and assessed for mean discharge rate and pattern of spontaneous activity. The responses of neurons in the internal segment of the globus pallidus to passive and active movements were also evaluated. Mean discharge rates of neurons in both segments of the pallidum in patients with dystonia and the patient with hemiballismus were considerably lower than those reported for patients with idiopathic Parkinsons disease. In addition, the pattern of spontaneous neuronal activity was highly irregular, occurring in intermittent grouped discharges separated by periods of pauses. Although receptive fields in the dystonia patients were widened and less specific than those reported in normal monkeys, neuronal responses to movement were uncommon in the hemiballismus patient. Before surgery, patients with dystonia experienced abnormal posturing and involuntary movements. Coactivation of agonist–antagonist muscle groups was observed both at rest and during the performance of simple movements. After pallidotomy there was a significant reduction in the involuntary movement associated with these disorders and a more normal pattern of electromyographic activity during rest and movement. Given the improvement in dystonic and hemiballistic movements in these patients after ablation of the sensorimotor portion of the internal segment of the globus pallidus, we suggest that pallidotomy can be an effective treatment for patients with dystonia and also for patients with medically intractable hemiballismus. Based on the finding of decreased neuronal discharge rates in pallidal neurons, we propose that physiologically dystonia most closely resembles a hyperkinetic movement disorder. A model for dystonia is proposed that incorporates the observed changes in the rate and pattern of neuronal activity in the pallidum with data from neuroimaging with positron emission tomography and 2‐deoxyglucose studies. Ann Neurol 1999;46:22–35


Lancet Neurology | 2010

Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial

William J. Marks; Raymond T. Bartus; Joao Siffert; Charles S Davis; Andres M. Lozano; Nicholas M. Boulis; Jerrold L. Vitek; Mark Stacy; Dennis A. Turner; Leonard Verhagen; Roy A. E. Bakay; Raymond G. Watts; Barton L. Guthrie; Joseph Jankovic; Richard K. Simpson; Michele Tagliati; Ron L. Alterman; Matthew B. Stern; Gordon H. Baltuch; Philip A. Starr; Paul S. Larson; Jill L. Ostrem; John G. Nutt; Karl Kieburtz; Jeffrey H. Kordower; C. Warren Olanow

BACKGROUND In an open-label phase 1 trial, gene delivery of the trophic factor neurturin via an adeno-associated type-2 vector (AAV2) was well tolerated and seemed to improve motor function in patients with advanced Parkinsons disease. We aimed to assess the safety and efficacy of AAV2-neurturin in a double-blind, phase 2 randomised trial. METHODS We did a multicentre, double-blind, sham-surgery controlled trial in patients with advanced Parkinsons disease. Patients were randomly assigned (2:1) by a central, computer generated, randomisation code to receive either AAV2-neurturin (5·4 × 10¹¹ vector genomes) injected bilaterally into the putamen or sham surgery. All patients and study personnel with the exception of the neurosurgical team were masked to treatment assignment. The primary endpoint was change from baseline to 12 months in the motor subscore of the unified Parkinsons disease rating scale in the practically-defined off state. All randomly assigned patients who had at least one assessment after baseline were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT00400634. RESULTS Between December, 2006, and November, 2008, 58 patients from nine sites in the USA participated in the trial. There was no significant difference in the primary endpoint in patients treated with AAV2-neurturin compared with control individuals (difference -0·31 [SE 2·63], 95% CI -5·58 to 4·97; p=0·91). Serious adverse events occurred in 13 of 38 patients treated with AAV2-neurturin and four of 20 control individuals. Three patients in the AAV2-neurturin group and two in the sham surgery group developed tumours. INTERPRETATION Intraputaminal AAV2-neurturin is not superior to sham surgery when assessed using the UPDRS motor score at 12 months. However, the possibility of a benefit with additional targeting of the substantia nigra and longer term follow-up should be investigated in further studies. FUNDING Ceregene and Michael J Fox Foundation for Parkinsons Research.


Clinical Neurophysiology | 2004

Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus

Cameron C. McIntyre; Susumu Mori; David L. Sherman; Nitish V. Thakor; Jerrold L. Vitek

OBJECTIVE The goal of this project was to develop a quantitative understanding of the volume of axonal tissue directly activated by deep brain stimulation (DBS) of the subthalamic nucleus (STN). METHODS The 3-dimensionally inhomogeneous and anisotropic tissue medium surrounding DBS electrodes complicates our understanding of the electric field and tissue response generated by the stimulation. We developed finite element computer models to address the effects of DBS in a homogeneous isotropic medium, and a medium with tissue conductivity properties derived from human diffusion tensor magnetic resonance data. The second difference of the potential distribution generated in the tissue medium was used as a predictor of the volume of tissue supra-threshold for axonal activation. RESULTS The model predicts that clinically effective stimulation parameters (-3 V; 0.1 ms; 150 Hz) result in activation of large diameter (5.7 microm) myelinated axons over a volume that spreads outside the borders of the STN. The shape of the activation volume was dependent on the strong dorsal-ventral anisotropy of the internal capsule, and the moderate anterior-posterior anisotropy of the region around zona incerta. CONCLUSIONS Small deviations ( approximately 1 mm) in the electrode position within STN can substantially alter the shape of the activation volume as well as its spread to neighboring structures. SIGNIFICANCE STN DBS represents an effective treatment for medically refractory movement disorders such as Parkinsons disease. However, stimulation induced side effects such as tetanic muscle contraction, speech disturbance and ocular deviation are not uncommon. Quantitative characterization of the spread of stimulation will aid in the development of techniques to maximize the efficacy of DBS.


Movement Disorders | 2002

Mechanisms of Deep Brain Stimulation: Excitation or Inhibition

Jerrold L. Vitek

There is little debate that deep brain stimulation (DBS) has been an effective tool in the treatment of Parkinsons disease as well as other movement disorders. There remains however, considerable debate concerning the mechanism(s) underlying its beneficial effect. The comparable effect of stimulation to ablation in the thalamus on tremor, and in the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) on the motor signs associated with PD, have led many investigators to conclude that DBS acts to suppress neuronal activity, decreasing output from the stimulated site. There are, however, data that do not support this argument. Microdialysis studies in GPi showed increased levels of glutamate during STN stimulation, suggesting activation of glutamatergic output from the STN to the GPi. Studies in parkinsonian primates have demonstrated increased mean discharge rates of neurons in GPi during chronic stimulation in STN, and GPi stimulation in humans has been associated with a suppression of neuronal activity in the thalamus. Contrary to what one would expect if stimulation inhibits output from the stimulated structure, stimulation in GPe has been demonstrated to improve bradykinesia. Although arguments for increased output from the stimulated structure seem to conflict with the hypothesis that stimulation acts to inhibit neuronal activity, it is possible to explain these observations through a common mechanism, e.g. activation of fiber pathways. Based on this mechanism, the effect of stimulation on cellular activity in the stimulated site would be increased or decreased dependent on the neurotransmitter of the afferent fibers projecting to that site. However, in addition to activation of afferent fibers, projection axons from neurons in the stimulated structure, also readily excitable by electrical stimulation, would also be tonically activated and discharge independently of the soma, thereby increasing output from the structure during extracellular stimulation. Thus, although high frequency stimulation may inhibit neurons via activation of inhibitory afferents, the output from that structure may be increased as the result of activation of axonal elements leaving the target structure. This hypothesis would explain the present experimental results, is consistent with excitability profiles of neuronal elements based on their biophysical properties, and fits with more recent models emphasizing the role of altered patterns of neuronal activity in the development of hypokinetic and hyperkinetic movement disorders.


Journal of Clinical Neurophysiology | 2004

How does deep brain stimulation work? Present understanding and future questions.

Cameron C. McIntyre; Marc Savasta; Benjamin L. Walter; Jerrold L. Vitek

Abstract: High-frequency deep brain stimulation (DBS) of the thalamus or basal ganglia represents an effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson’s disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been vaulted forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address the present knowledge of the effects of high frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS. Four general hypotheses have been developed to explain the mechanism(s) of DBS: depolarization blockade, synaptic inhibition, synaptic depression, and stimulation-induced modulation of pathologic network activity. Using the results from microdialysis, neural recording, functional imaging, and neural modeling experiments, the authors address the main hypotheses and attempt to reconcile what have been considered conflicting results from different research modalities.


Journal of Neuroscience Methods | 1996

Burst and oscillation as disparate neuronal properties

Yoshiki Kaneoke; Jerrold L. Vitek

We have developed methods to detect and discern burst and oscillatory patterns of neuronal activity. In them, a burst period is defined as an interval in which there are a significantly higher number of spikes as compared to other intervals in the spike train. Oscillation is defined as a spike train in which significant periodicity is detected in its autocorrelogram. The main feature of our burst detection method is that discharge density (i.e., the number of spikes in a short interval) is used instead of the interspike interval. This enables one to assess the likelihood of having burst periods in a spike train. We use the Lomb periodogram to detect periodicity in an autocorrelogram. This method gives one significance of periodicity detected and enables the detection of multiple frequencies in an autocorrelogram. The advantage of these methods is discussed in comparison with the other methods used to detect bursting and oscillatory activity.


Movement Disorders | 2006

Deep brain stimulation: postoperative issues.

Günther Deuschl; Jan Herzog; Galit Kleiner-Fisman; Cynthia S. Kubu; Andres M. Lozano; Kelly E. Lyons; Maria C. Rodriguez-Oroz; Filippo Tamma; Alexander I. Tröster; Jerrold L. Vitek; Jens Volkmann; Valerie Voon

Numerous factors need to be taken into account when managing a patient with Parkinsons disease (PD) after deep brain stimulation (DBS). Questions such as when to begin programming, how to conduct a programming screen, how to assess the effects of programming, and how to titrate stimulation and medication for each of the targeted sites need to be addressed. Follow‐up care should be determined, including patient adjustments of stimulation, timing of follow‐up visits and telephone contact with the patient, and stimulation and medication conditions during the follow‐up assessments. A management plan for problems that can arise after DBS such as weight gain, dyskinesia, axial symptoms, speech dysfunction, muscle contractions, paresthesia, eyelid, ocular and visual disturbances, and behavioral and cognitive problems should be developed. Long‐term complications such as infection or erosion, loss of effect, intermittent stimulation, tolerance, and pain or discomfort can develop and need to be managed. Other factors that need consideration are social and job‐related factors, development of dementia, general medical issues, and lifestyle changes. This report from the Consensus on Deep Brain Stimulation for Parkinsons Disease, a project commissioned by the Congress of Neurological Surgeons and the Movement Disorder Society, outlines answers to a series of questions developed to address all aspects of DBS postoperative management and decision‐making with a systematic overview of the literature (until mid‐2004) and by the expert opinion of the authors. The report has been endorsed by the Scientific Issues Committee of the Movement Disorder Society and the American Society of Stereotactic and Functional Neurosurgery.


Movement Disorders | 2002

Pathophysiology of Dystonia: A Neuronal Model

Jerrold L. Vitek

Dystonia has commonly been thought to represent a disorder of basal ganglia function. Although long considered a hyperkinetic movement disorder, the evidence to support such a classification was based on the presence of excessive involuntary movement, not on physiological data. Only recently, with the return of surgical procedures using microelectrode guidance for the treatment of dystonia, has electrophysiological data demonstrated an alteration in mean discharge rate, somatosensory responsiveness and the pattern of neuronal activity in the basal ganglia thalamocortical motor circuit. Previous models of dystonia suggested that reduced mean discharge rates in the globus pallidus internus (GPi) led to unopposed increases in activity in the thalamocortical circuit that precipitated the development of involuntary movement associated with dystonia. This model has subsequently been modified given the clear improvement in dystonic symptoms following lesions in the GPi, a procedure that is associated with a further reduction in pallidal output. The improvement in dystonia following pallidal lesions is difficult to reconcile with the “rate” hypothesis for hypokinetic and hyperkinetic movement disorders and has led to the development of alternative models that, in addition to rate, incorporate changes in pattern, somatosensory responsiveness and degree of synchronization of neuronal activity. Present models of dystonia, however, must not only take these changes into account but must reconcile these changes with the reported changes in cortical excitability reported with transcranial magnetic stimulation, the changes in metabolic activity in cortical and subcortical structures documented by positron emission tomography (PET), and the alterations in spinal and brainstem reflexes. A model incorporating these changes together with the reported changes in neuronal activity in the basal ganglia and thalamus is presented.

Collaboration


Dive into the Jerrold L. Vitek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy A. E. Bakay

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianyu Zhang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Noam Harel

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge