Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary W. Blissard is active.

Publication


Featured researches published by Gary W. Blissard.


Archives of Virology | 2006

On the classification and nomenclature of baculoviruses: A proposal for revision

Johannes A. Jehle; Gary W. Blissard; Bryony C. Bonning; J. S. Cory; Elisabeth A. Herniou; George F. Rohrmann; David A. Theilmann; S. M. Thiem; Just M. Vlak

Summary.Recent evidence from genome sequence analyses demands a substantial revision of the taxonomy and classification of the family Baculoviridae. Comparisons of 29 baculovirus genomes indicated that baculovirus phylogeny followed the classification of the hosts more closely than morphological traits that have previously been used for classification of this virus family. On this basis, dipteran- and hymenopteran-specific nucleopolyhedroviruses (NPV) should be separated from lepidopteran-specific NPVs and accommodated into different genera. We propose a new classification and nomenclature for the genera within the baculovirus family. According to this proposal the updated classification should include four genera: Alphabaculovirus (lepidopteran-specific NPV), Betabaculovirus (lepidopteran-specific Granuloviruses), Gammabaculovirus (hymenopteran-specific NPV) and Deltabaculovirus (dipteran-specific NPV).


Cytotechnology | 1996

Baculovirus-insect cell interactions

Gary W. Blissard

Baculovirus interactions with host cells range from the physical interactions that occur during viral binding and entry, to the complex and subtle mechanisms that reculate host gene expression and modify and regulate cellular and organismal physiology and defenses. Fundamental studies of baculovirus biochemistry and molecular biology have yielded many interesting and important discoveries on the mechanisms of these virus-host interactions. Information from such studies has also resulted in exciting new strategies for environmentally sound insect pest control, and in the development and improvement of a valuable eukaryotic expression vector system. In addition a number of important and valuable model biological systems have emerged from studies of baculoviruses. These include robust systems for studies of eukaryotic transcription, viral DNA replication, membrane fusion, and apoptosis. Because functions have been identified for only a small number of baculovirus genes, we can expect many exciting new discoveries in the future and an unfolding of the complex and intricate relationship between baculoviruses and insect cells.


Journal of Virology | 2002

Pseudotyping Autographa californica Multicapsid Nucleopolyhedrovirus (AcMNPV): F Proteins from Group II NPVs Are Functionally Analogous to AcMNPV GP64

Oliver Lung; Marcel Westenberg; Just M. Vlak; D. Zuidema; Gary W. Blissard

ABSTRACT GP64, the major envelope glycoprotein of budded virions of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), is involved in viral attachment, mediates membrane fusion during virus entry, and is required for efficient virion budding. Thus, GP64 is essential for viral propagation in cell culture and in animals. Recent genome sequences from a number of baculoviruses show that only a subset of closely related baculoviruses have gp64 genes, while other baculoviruses have a recently discovered unrelated envelope protein named F. F proteins from Lymantria dispar MNPV (LdMNPV) and Spodoptera exigua MNPV (SeMNPV) mediate membrane fusion and are therefore thought to serve roles similar to that of GP64. To determine whether F proteins are functionally analogous to GP64 proteins, we deleted the gp64 gene from an AcMNPV bacmid and inserted F protein genes from three different baculoviruses. In addition, we also inserted envelope protein genes from vesicular stomatitis virus (VSV) and Thogoto virus. Transfection of the gp64-null bacmid DNA into Sf9 cells does not generate infectious particles, but this defect was rescued by introducing either the F protein gene from LdMNPV or SeMNPV or the G protein gene from VSV. These results demonstrate that baculovirus F proteins are functionally analogous to GP64. Because baculovirus F proteins appear to be more widespread within the family and are much more divergent than GP64 proteins, gp64 may represent the acquisition of an envelope protein gene by an ancestral baculovirus. The AcMNPV pseudotyping system provides an efficient and powerful method for examining the functions and compatibilities of analogous or orthologous viral envelope proteins, and it could have important biotechnological applications.


Journal of Virology | 2005

Persistent Gene Expression in Mouse Nasal Epithelia following Feline Immunodeficiency Virus-Based Vector Gene Transfer

Patrick L. Sinn; Erin R. Burnight; Melissa A. Hickey; Gary W. Blissard; Paul B. McCray

ABSTRACT Gene transfer development for treatment or prevention of cystic fibrosis lung disease has been limited by the inability of vectors to efficiently and persistently transduce airway epithelia. Influenza A is an enveloped virus with natural lung tropism; however, pseudotyping feline immunodeficiency virus (FIV)-based lentiviral vector with the hemagglutinin envelope protein proved unsuccessful. Conversely, pseudotyping FIV with the envelope protein from influenza D (Thogoto virus GP75) resulted in titers of 106 transducing units (TU)/ml and conferred apical entry into well-differentiated human airway epithelial cells. Baculovirus GP64 envelope glycoproteins share sequence identity with influenza D GP75 envelope glycoproteins. Pseudotyping FIV with GP64 from three species of baculovirus resulted in titers of 107 to 109 TU/ml. Of note, GP64 from Autographa californica multicapsid nucleopolyhedrovirus resulted in high-titer FIV preparations (∼109 TU/ml) and conferred apical entry into polarized primary cultures of human airway epithelia. Using a luciferase reporter gene and bioluminescence imaging, we observed persistent gene expression from in vivo gene transfer in the mouse nose with A. californica GP64-pseudotyped FIV (AcGP64-FIV). Longitudinal bioluminescence analysis documented persistent expression in nasal epithelia for ∼1 year without significant decline. According to histological analysis using a LacZ reporter gene, olfactory and respiratory epithelial cells were transduced. In addition, methylcellulose-formulated AcGP64-FIV transduced mouse nasal epithelia with much greater efficiency than similarly formulated vesicular stomatitis virus glycoprotein-pseudotyped FIV. These data suggest that AcGP64-FIV efficiently transduces and persistently expresses a transgene in nasal epithelia in the absence of agents that disrupt the cellular tight junction integrity.


Journal of Virology | 2013

The Transcriptome of the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus in Trichoplusia ni Cells

Yun-Ru Chen; Silin Zhong; Zhangjun Fei; Yoshifumi Hashimoto; Jenny Xiang; Shiying Zhang; Gary W. Blissard

ABSTRACT Baculoviruses are important insect pathogens that have been developed as protein expression vectors in insect cells and as transduction vectors for mammalian cells. They have large double-stranded DNA genomes containing approximately 156 tightly spaced genes, and they present significant challenges for transcriptome analysis. In this study, we report the first comprehensive analysis of AcMNPV transcription over the course of infection in Trichoplusia ni cells, by a combination of strand-specific RNA sequencing (RNA-Seq) and deep sequencing of 5′ capped transcription start sites and 3′ polyadenylation sites. We identified four clusters of genes associated with distinctive patterns of mRNA accumulation through the AcMNPV infection cycle. A total of 218 transcription start sites (TSS) and 120 polyadenylation sites (PAS) were mapped. Only 29 TSS were associated with a canonical TATA box, and 14 initiated within or near the previously identified CAGT initiator motif. The majority of viral transcripts (126) initiated within the baculovirus late promoter motif (TAAG), and late transcripts initiated precisely at the second position of the motif. Analysis of 3′ ends showed that 92 (77%) of the 3′ PAS were located within 30 nucleotides (nt) downstream of a consensus termination signal (AAUAAA or AUUAAA). A conserved U-rich region was found approximately 2 to 10 nt downstream of the PAS for 58 transcripts. Twelve splicing events and an unexpectedly large number of antisense RNAs were identified, revealing new details of possible regulatory mechanisms controlling AcMNPV gene expression. Combined, these data provide an emerging global picture of the organization and regulation of AcMNPV transcription through the infection cycle.


Journal of Virology | 2003

Ac23, an Envelope Fusion Protein Homolog in the Baculovirus Autographa californica Multicapsid Nucleopolyhedrovirus, Is a Viral Pathogenicity Factor

Oliver Lung; Marilyn Cruz-Alvarez; Gary W. Blissard

ABSTRACT Viral envelope fusion proteins are important structural proteins that mediate viral entry and may affect or determine the host range of a virus. The acquisition, exchange, and evolution of such envelope proteins may dramatically affect the success and evolutionary divergence of viruses. In the family Baculoviridae, two very different envelope fusion proteins have been identified. Budded virions of group I nucleopolyhedroviruses (NPVs) such as the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), contain the essential GP64 envelope fusion protein. In contrast group II NPVs and granuloviruses have no gp64 gene but instead encode a different envelope protein called F. F proteins from group II NPVs can functionally substitute for GP64 in gp64null AcMNPV viruses, indicating that GP64 and these F proteins serve a similar functional role. Interestingly, AcMNPV (and other gp64-containing group I NPVs) also contain an F gene homolog (Ac23) but the AcMNPV F homolog cannot compensate for the loss of gp64. In the present study, we show that Ac23 is expressed and is found in budded virions. To examine the function of F protein homologs from the gp64-containing baculoviruses, we generated an Ac23null AcMNPV genome by homologous recombination in E. coli. We found that Ac23 was not required for viral replication or pathogenesis in cell culture or infected animals. However, Ac23 accelerated the mortality of infected insect hosts by approximately 28% or 26 h. Thus, Ac23 represents an important viral pathogenicity factor in larvae infected with AcMNPV.


Virology | 1992

A synthetic early promoter from a baculovirus: Roles of the TATA box and conserved start site CAGT sequence in basal levels of transcription

Gary W. Blissard; Philip H. Kogan; Rosalind Wei; George F. Rohrmann

Many baculovirus early genes and insect genes transcribed by RNA polymerase II have a conserved transcription start site sequence (CAGT) located downstream of a consensus TATA box. To examine the functions and interactions of these two motifs in initiating accurately positioned basal transcription, a 43-nt synthetic promoter was synthesized from the TATA box and start site sequences of the gp64 early promoter from the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus (OpMNPV). The synthetic promoter initiated accurately and was also transactivated by the baculovirus transcriptional activator, IE1. To determine the roles of sequences within the 43-nt synthetic promoter, a series of linker-scanning and spacing mutations were analyzed for transcriptional activity, start site selection, and transactivation. Linker-scanning mutations were examined in vivo by transient expression and reporter gene assays. To examine transcription start site selection, promoter constructs were used for in vitro transcription in nuclear extracts from uninfected Spodoptera frugiperda (Sf9) cells. In vivo and in vitro analyses show that the TATA box, and not the start site CAGT, is the primary element controlling start site selection. Substitution of the conserved start site CAGT sequence resulted in a reduction of both reporter gene activity and in vitro transcripts, although transcripts initiated accurately. Data from linker-scanning and spacing mutations indicate that the conserved start site CAGT sequences are not required for accurate initiation but sequences at the start site play an important role in initiation efficiency.


Journal of Virology | 2002

Analysis of an Autographa californica nucleopolyhedrovirus lef-11 knockout: LEF-11 is essential for viral DNA replication

Guangyun Lin; Gary W. Blissard

ABSTRACT The Autographa californica nucleopolyhedrovirus (AcMNPV) lef-11 gene was previously identified by transient late expression assays as a gene important for viral late gene expression. The lef-11 gene was not previously identified as necessary for DNA replication in transient origin-dependent plasmid DNA replication assays. To examine the role of lef-11 in the context of the infection cycle, we generated a deletion of the lef-11 gene by recombination in an AcMNPV genome propagated as a BACmid in Escherichia coli. The resulting AcMNPV lef-11-null BACmid (vAclef11KO) was unable to propagate in cell culture, although a “repair” AcMNPV BACmid (vAclef11KO-REP), which was generated by transposition of the lef-11 gene into the polyhedrin locus of the vAclef11KO BACmid, was able to replicate in a manner similar to wild-type or control AcMNPV viruses. Thus, the lef-11 gene is essential for viral replication in Sf9 cells. The vAclef11KO BACmid was examined to determine if the defect in viral replication resulted from a defect in DNA replication or from a defect in late transcription. The lef-11-null BACmid and control BACmids were transfected into Sf9 cells, and viral DNA replication was monitored. The viral DNA genome of the lef-11-null BACmid (vAclef11KO) was not amplified, whereas replication and amplification of the genomes of the repair BACmid (vAclef11KO-REP), wild-type AcMNPV, and a nonpropagating gp64-null control BACmid (vAcGUSgp64KO) were readily detected. Northern blot analysis of transcripts from selected early, late, and very late genes showed that late and very late transcription was absent in cells transfected with the lef-11-null BACmid. Thus, in contrast to prior studies using transient replication and late expression assays, studies of a lef-11-null BACmid indicate that LEF-11 is required for viral DNA replication during the infection cycle.


Journal of Virology | 2001

A GP64-Null Baculovirus Pseudotyped with Vesicular Stomatitis Virus G Protein

J. T. Mangor; S.A. Monsma; M. C. Johnson; Gary W. Blissard

ABSTRACT The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) GP64 protein is an essential virion protein that is involved in both receptor binding and membrane fusion during viral entry. Genetic studies have shown that GP64-null viruses are unable to move from cell to cell and this results from a defect in the assembly and production of budded virions (BV). To further examine requirements for virion budding, we asked whether a GP64-null baculovirus, vAc64−, could be pseudotyped by introducing a heterologous viral envelope protein (vesicular stomatitis virus G protein [VSV-G]) into its membrane and whether the resulting virus was infectious. To address this question, we generated a stably transfected insect Sf9 cell line (Sf9VSV-G) that inducibly expresses the VSV-G protein upon infection with AcMNPV Sf9VSV-G and Sf9 cells were infected with vAc64−, and cells were monitored for infection and for movement of infection from cell to cell. vAc64− formed plaques on Sf9VSV-G cells but not on Sf9 cells, and plaques formed on Sf9VSV-G cells were observed only after prolonged intervals. Passage and amplification of vAc64− on Sf9VSV-G cells resulted in pseudotyped virus particles that contained the VSV-G protein. Cell-to-cell propagation of vAc64− in the G-expressing cells was delayed in comparison to wild-type (wt) AcMNPV, and growth curves showed that pseudotyped vAc64− was generated at titers of approximately 106 to 107 infectious units (IU)/ml, compared with titers of approximately 108 IU/ml for wt AcMNPV. Propagation and amplification of pseudotyped vAc64− virions in Sf9VSV-G cells suggests that the VSV-G protein may either possess the signals necessary for baculovirus BV assembly and budding at the cell surface or may otherwise facilitate production of infectious baculovirus virions. The functional complementation of GP64-null viruses by VSV-G protein was further demonstrated by identification of a vAc64−-derived virus that had acquired the G gene through recombination with Sf9VSV-G cellular DNA. GP64-null viruses expressing the VSV-G gene were capable of productive infection, replication, and propagation in Sf9 cells.


Virology | 1989

Segment W of Campoletis sonorensis virus: Expression, gene products, and organization

Gary W. Blissard; David A. Theilmann; Max D. Summers

Campoletis sonorensis virus (CsV, Polydnaviridae) is a segmented double-stranded DNA virus which has an apparently symbiotic relationship with the parasitic wasp, Campoletis sonorensis. CsV replicates in the oviducts of the parasitic wasp and is injected into the wasps host, Heliothis virescens (Lepidoptera; Noctuiidae), during oviposition. In the parasitized lepidopteran host, the virus has a dramatic effect on host physiology and viral gene products are believed to play an essential role in the survival of the parasitic wasps egg and larva. In the current study, we used Northern blot analyses to examine expression from segment W in the parasitized host and in the parasitic wasp. Segment W hybridized primarily to two relatively abundant mRNAs (1.6 and 1.0 kb) from the parasitized host. These 1.6- and 1.0-kb mRNAs, which were previously shown to be transcribed from two closely related genes (WHv1 and WHv2) on segment W (G. W. Blissard, O. P. Smith, and M. D. Summers, 1987, Virology 160, 120-134) increased in relative abundance between 2 and 24 hr postparasitization (pp) and were detected throughout parasitization (8 days). To study the proteins encoded by these closely related genes, the open reading frame from each of the related genes was cloned into a baculovirus expression vector. By pulse labeling in the presence and absence of tunicamycin, we examined secretion and glycosylation of these CsV proteins in infected lepidopteran cells (Spodoptera frugiperda). Expression of segment W in the oviducts of the female wasp was also examined. Segment W hybridized to at least five CsV mRNAs on Northern blots of poly(A) mRNA from C. sonorensis oviducts. To identify specific CsV mRNAs and map putative viral genes expressed in wasp oviduct tissues, segment W was used to screen a cDNA library of C. sonorensis oviduct mRNAs. Three cDNAs were used to identify CsV mRNAs by Northern blot analyses and to map the locations of three putative CsV genes on segment W. Cross-hybridization within the CsV genome was examined with cloned segment W and with the three cloned cDNAs.

Collaboration


Dive into the Gary W. Blissard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangyun Lin

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

S.A. Monsma

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

David A. Theilmann

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

A.G.P. Oomens

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

Oliver Lung

Boyce Thompson Institute for Plant Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge