Gašper Kokot
Argonne National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gašper Kokot.
Scientific Reports | 2015
Gašper Kokot; David Piet; George M. Whitesides; Igor S. Aranson; Alexey Snezhko
Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-particle-thick wires to dynamic arrays of spinners (self-assembled short chains) rotating in either direction. The spinners emerge via spontaneous breaking of the uniaxial symmetry of the energizing magnetic field. Demonstration of the formation and disaggregation of particle assemblies suggests strategies to form new meso-scale structures with the potential to perform functions such as mixing and sensing.
Biomicrofluidics | 2011
Gašper Kokot; Mojca Vilfan; Natan Osterman; Andrej Vilfan; Blaž Kavčič; Igor Poberaj; Dušan Babič
We observed and measured the fluid flow that was generated by an artificial cilium. The cilium was composed of superparamagnetic microspheres, in which magnetic dipole moments were induced by an external magnetic field. The interaction between the dipole moments resulted in formation of long chains-cilia, and the same external magnetic field was also used to drive the cilia in a periodic manner. Asymmetric periodic motion of the cilium resulted in generation of fluid flow and net pumping of the surrounding fluid. The flow and pumping performance were closely monitored by introducing small fluorescent tracer particles into the system. By detecting their motion, the fluid flow around an individual cilium was mapped and the flow velocities measured. We confirm that symmetric periodic beating of one cilium results in vortical motion only, whereas asymmetry is required for additional translational motion. We determine the effect of asymmetry on the pumping performance of a cilium, verify the theoretically predicted optimal pumping conditions, and determine the fluid behaviour around a linear array of three neighbouring cilia. In this case, the contributions of neighbouring cilia enhance the maximal flow velocity compared with a single cilium and contribute to a more uniform translational flow above the surface.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Gašper Kokot; Shibananda Das; Roland G. Winkler; Gerhard Gompper; Igor S. Aranson; Alexey Snezhko
Significance Turbulent fluid motion is widespread in nature and is observed across diverse length and time scales, ranging from high-Reynolds number hydrodynamics to active fluids, such as bacterial suspensions and cytoskeletal extracts. It is recognized as one of the unsolved challenges in theoretical physics. Here, we explore out-of-equilibrium magnetic colloidal particles at liquid interfaces that exhibit complex collective behavior, resulting in emergence of an active spinner phase. Self-assembled spinners (active spinning without self-propulsion) induce vigorous vortical flows, demonstrating the properties of a 2D hydrodynamic turbulence. Our findings provide insight into the behavior of active spinner liquids and ways to control the collective dynamics and transport in active colloidal materials. Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.
Beilstein Journal of Nanotechnology | 2012
Mojca Vilfan; Gašper Kokot; Andrej Vilfan; Natan Osterman; Blaž Kavčič; Igor Poberaj; Dušan Babič
Summary Biological cilia are found on surfaces of some microorganisms and on surfaces of many eukaryotic cells where they interact with the surrounding fluid. The periodic beating of the cilia is asymmetric, resulting in directed swimming of unicellular organisms or in generation of a fluid flow above a ciliated surface in multicellular ones. Following the biological example, externally driven artificial cilia have recently been successfully implemented as micropumps and mixers. However, biomimetic systems are useful not only in microfluidic applications, but can also serve as model systems for the study of fundamental hydrodynamic phenomena in biological samples. To gain insight into the basic principles governing propulsion and fluid pumping on a micron level, we investigated hydrodynamics around one beating artificial cilium. The cilium was composed of superparamagnetic particles and driven along a tilted cone by a varying external magnetic field. Nonmagnetic tracer particles were used for monitoring the fluid flow generated by the cilium. The average flow velocity in the pumping direction was obtained as a function of different parameters, such as the rotation frequency, the asymmetry of the beat pattern, and the cilium length. We also calculated the velocity field around the beating cilium by using the analytical far-field expansion. The measured average flow velocity and the theoretical prediction show an excellent agreement.
Soft Matter | 2013
Gašper Kokot; Alexey Snezhko; Igor S. Aranson
We report on an emergent coherent behavior of a ferromagnetic colloidal monolayer suspended at a liquid–air interface and powered by a single-axis alternating in-plane magnetic field. Large-scale coherent states are manifested by formation of dynamic vortex arrays within the colloidal monolayer. Emergence of the dynamic coherence and self-organized patterns in this non-equilibrium colloidal system is attributed to a spontaneous symmetry breaking due to subtle interplay between magnetic, steric, and hydrodynamic forces acting on individual colloidal particles. Collective response of the magnetic colloidal monolayer induces in-plane rectified hydrodynamic surface flows which in turn entrains the particles, resulting in a variety of coherent states.
Scientific Reports | 2017
Gašper Kokot; G. V. Kolmakov; Igor S. Aranson; Alexey Snezhko
We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. The morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.
Langmuir | 2016
Tomaž Mohorič; Gašper Kokot; Natan Osterman; Alexey Snezhko; Andrej Vilfan; Dušan Babič; Jure Dobnikar
Magnetic colloids in external time-dependent fields are subject to complex induced many-body interactions governing their self-assembly into a variety of equilibrium and out-of-equilibrium structures such as chains, networks, suspended membranes, and colloidal foams. Here, we report experiments, simulations, and theory probing the dynamic assembly of superparamagnetic colloids in precessing external magnetic fields. Within a range of field frequencies, we observe dynamic large-scale structures such as ordered phases composed of precessing chains, ribbons, and rotating fluidic vortices. We show that the structure formation is inherently coupled to the buildup of torque, which originates from internal relaxation of induced dipoles and from transient correlations among the particles as a result of short-lived chain formation. We discuss in detail the physical properties of the vortex phase and demonstrate its potential in particle-coating applications.
Nature Communications | 2018
Gašper Kokot; Alexey Snezhko
Active colloids are an emergent class of out-of-equilibrium materials demonstrating complex collective phases and tunable functionalities. Microscopic particles energized by external fields exhibit a plethora of fascinating collective phenomena, yet mechanisms of control and manipulation of active phases often remains lacking. Here we report the emergence of unconfined macroscopic vortices in a system of ferromagnetic rollers energized by a vertical alternating magnetic field and elucidate the complex nature of a magnetic roller-vortex interactions with inert scatterers. We demonstrate that active self-organized vortices have an ability to spontaneously switch the direction of rotation and move across the surface. We reveal the capability of certain non-active particles to pin the vortex and manipulate its dynamics. Building on our findings, we demonstrate the potential of magnetic roller vortices to effectively capture and transport inert particles at the microscale.Active systems utilize energy input to realize structural complexity and functional diversity. This work shows that magnetic colloidal rollers spontaneously self-organize into unconfined macroscopic vortices under a magnetic field, which can be used to transport inert particles across a flat surface.
Applied Physics Express | 2016
Blaž Kavčič; Gašper Kokot; Igor Poberaj; Dušan Babič; Natan Osterman
We report on a maskless lithography rapid prototyping system for the fabrication of multimaterial hybrid structures in standard i-line negative photoresists enriched by the addition of functionalization particles. The system uses a combination of image recognition methods to detect particle positions in the photoresist and laser direct imaging to illuminate it with a focused ultraviolet laser. A set of acousto-optic deflectors, used to steer the laser, enables precise high-speed illumination of complex patterns. As a result, hybrid micron-sized structures composed of a base particle embedded in a photoresist frame can be manufactured using a one-pass process.
Bulletin of the American Physical Society | 2018
Gašper Kokot; Alexey Snezhko