Gatien Moriceau
University of Nantes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gatien Moriceau.
Cancer Research | 2010
Gatien Moriceau; Benjamin Ory; Laura Mitrofan; Chiara Riganti; Frédéric Blanchard; Régis Brion; Céline Charrier; Séverine Battaglia; Paul Pilet; Marc G. Denis; Leonard D. Shultz; Jukka Mönkkönen; Françoise Rédini; Dominique Heymann
Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in improving the response to chemotherapy warrants new strategies still needed to improve overall patient survival. In this study, we investigated in vivo the effects of RAD001 (Everolimus), a new orally available mTOR inhibitor, on the growth of human and mouse osteosarcoma cells either alone or in combination with zoledronate (ZOL), an anti-osteoporotic drug used to treat bone metastases. RAD001 inhibited osteosarcoma cell proliferation in a dose- and time-dependent manner with no modification of cell-cycle distribution. Combination with ZOL augmented this inhibition of cell proliferation, decreasing PI3K/mTOR signaling compared with single treatments. Notably, in contrast to RAD001, ZOL downregulated isoprenylated membrane-bound Ras concomitantly with an increase of nonisoprenylated cytosolic Ras in sensitive and resistant osteosarcoma cell lines to both drugs. Moreover, ZOL and RAD001 synergized to decrease Ras isoprenylation and GTP-bound Ras levels. Further, the drug combination reduced tumor development in two murine models of osteoblastic or osteolytic osteosarcoma. We found that ZOL could reverse RAD001 resistance in osteosarcoma, limiting osteosarcoma cell growth in combination with RAD001. Our findings rationalize further study of the applications of mTOR and mevalonate pathway inhibitors that can limit protein prenylation pathways.
Current Pharmaceutical Design | 2010
Gatien Moriceau; Benjamin Ory; Bérengère Gobin; Franck Verrecchia; François Gouin; Frédéric Blanchard; Françoise Rédini; Dominique Heymann
Bone tumours can be dissociated in two main categories: i) primary bone tumours (benign or malignant) including mainly osteosarcoma and other sarcomas.ii)and giant cell tumour and bone metastases originate from others cancer (Breast, prostate, kidney cancer, etc). These tumours are able to destroy or/and induce a new calcified matrix. However, the first step of bone tumour development is associated with an induction of bone resorption and the establishment of a vicious cycle between the osteoclasts and the tumour growth. Indeed, bone resorption contributes to the pathogenesis of bone tumour by the release of cytokines (IL6, TNFα) which govern the bone tumours development and which are trapped into the bone matrix. Bisphosphonates (BPs) are chemical compounds of P-C-P structure with a high affinity for bone hydroxyapatite crystals. Thus, they have been used as a carrier for radio nucleotides to develop novel approaches of bone imaging. BPs exert also indirect anti-tumour activities in vivo. Indeed, BPs directly interfere with the bone microenvironment and target osteoclasts, endothelial cells and immune cells (tumour-associated macrophages, γ9δ2 T cells). BPs induce tumour cell death in vitro and same activity is suspected in vivo. The present review summarizes the mechanisms of actions of BPs as well as their clinical interests in bone primary tumours.
Current Medicinal Chemistry | 2007
Benjamin Ory; Gatien Moriceau; Françoise Rédini; Dominique Heymann
N-BP, rapamycin and its derivatives have been originally developed respectively as anti-resorptive and anti-fungal agents. In fact, in vitro and in vivo experiments demonstrated that these compounds are multi-functional molecules exerting their effects on tumour cell growth and bone remodelling. The major challenge in treating cancer relates to mutations in key genes such as p53, Rb or proteins affecting caspase signalling carried by many tumour cells. Whether nitrogen containing bisphosphonates (N-BP) are potent bone inhibitors, they also inhibit tumour cell proliferation and increase atypical apoptosis of bone tumour cells regardless of the p53 and Rb status. N-BP may be then considered as effective therapeutic agents in clinical trials of bone tumours. Rapamycin and its derivatives inhibit mTOR dependent mRNA translation both in osteoclasts and tumour cells. Cellular physiological mechanisms regulated by mTOR integrate many environmental parameters including growth factors, hormones, cytokines, amino acids, energy availability and cellular stresses that are coupled with cell cycle progression and cell growth. Rapamycin and its derivatives as well as N-BP must be considered as bi-(multi) functional molecules affecting simultaneously bone and tumour metabolisms. The present survey describes these two molecular families and discusses their therapeutic interests for primary bone tumours and bone metastases.
PLOS ONE | 2014
Bérengère Gobin; Gatien Moriceau; Benjamin Ory; Céline Charrier; Régis Brion; Frédéric Blanchard; Françoise Rédini; Dominique Heymann
Osteosarcoma is the most common primary malignant bone tumour characterized by osteoid production and/or osteolytic lesions of bone. A lack of response to chemotherapeutic treatments shows the importance of exploring new therapeutic methods. Imatinib mesylate (Gleevec, Novartis Pharma), a tyrosine kinase inhibitor, was originally developed for the treatment of chronic myeloid leukemia. Several studies revealed that imatinib mesylate inhibits osteoclast differentiation through the M-CSFR pathway and activates osteoblast differentiation through PDGFR pathway, two key cells involved in the vicious cycle controlling the tumour development. The present study investigated the in vitro effects of imatinib mesylate on the proliferation, apoptosis, cell cycle, and migration ability of five osteosarcoma cell lines (human: MG-63, HOS; rat: OSRGA; mice: MOS-J, POS-1). Imatinib mesylate was also assessed as a curative and preventive treatment in two syngenic osteosarcoma models: MOS-J (mixed osteoblastic/osteolytic osteosarcoma) and POS-1 (undifferentiated osteosarcoma). Imatinib mesylate exhibited a dose-dependent anti-proliferative effect in all cell lines studied. The drug induced a G0/G1 cell cycle arrest in most cell lines, except for POS-1 and HOS cells that were blocked in the S phase. In addition, imatinib mesylate induced cell death and strongly inhibited osteosarcoma cell migration. In the MOS-J osteosarcoma model, oral administration of imatinib mesylate significantly inhibited the tumour development in both preventive and curative approaches. A phospho-receptor tyrosine kinase array kit revealed that PDGFRα, among 7 other receptors (PDFGFRβ, Axl, RYK, EGFR, EphA2 and 10, IGF1R), appears as one of the main molecular targets for imatinib mesylate. In the light of the present study and the literature, it would be particularly interesting to revisit therapeutic evaluation of imatinib mesylate in osteosarcoma according to the tyrosine-kinase receptor status of patients.
Cancer | 2012
Gatien Moriceau; Anke J. Roelofs; Régis Brion; Françoise Rédini; Frank H. Ebetion; Michael J. Rogers; Dominique Heymann
Osteosarcoma is the most frequent malignant primary bone tumor that occurs mainly in the young, with an incidence peak observed at age 18 years. Both apomine and lovastatin have antitumor activity in a variety of cancer cell lines. Apomine, a 1,1‐bisphosphonate‐ester, increases the rate of degradation of 3‐hydroxy‐3 methylglutaryl‐coenzyme A (HMG‐CoA) reductase, the rate‐limiting enzyme in the mevalonate pathway, whereas lovastatin competitively inhibits HMG‐CoA reductase enzyme activity, thereby preventing protein prenylation and cholesterol synthesis.
Journal of Biomedical Materials Research Part A | 2013
S. Lionetto; A. Little; Gatien Moriceau; Dominique Heymann; M. Decurtins; M. Plecko; Luis Filgueira; Dieter Cadosch
In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS.
Cancer Research | 2018
Kevin Leslie; Dian Huang; Graeme I. Murray; Daniel Guest; Irena J. Roy; Marco Piva; Gatien Moriceau; Roger S. Lo; Michael A. Teitell; Jason Reed
Bone Abstracts | 2013
Bérengère Gobin; Gatien Moriceau; Benjamin Ory; Régis Brion; Françoise Rédini; Dominique Heymann
Bone | 2010
Gatien Moriceau; Anke J. Roelofs; Régis Brion; F. Hal Ebetino; Michael J. Rogers; Dominique Heymann
Bone | 2009
Gatien Moriceau; Benjamin Ory; Laura Mitrofan; Régis Brion; Céline Charrier; Paul Pilet; Leonard D. Shultz; Jukka Mönkkönen; Françoise Rédini; Dominique Heymann