Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gautam Dantas is active.

Publication


Featured researches published by Gautam Dantas.


Science | 2012

The shared antibiotic resistome of soil bacteria and human pathogens

Kevin J. Forsberg; Alejandro Reyes; Bin Wang; Elizabeth M. Selleck; Morten Otto Alexander Sommer; Gautam Dantas

From Farm to Clinic? Soil organisms have long been assumed to be an important source of antibiotic resistance genes, in part because of antibiotic-treated livestock and in part because of the natural ecology of antibiotic production in the soil. Forsberg et al. (p. 1107) developed a metagenomic protocol to assemble short-read sequence data after antibiotic selection experiments, using 12 different drugs in all antibiotic classes, and compared antibiotic resistance gene sequences between soil bacteria and clinically occurring pathogens. Sixteen sequences, representing seven gene products, were discovered in farmland soil bacteria within long stretches of perfect nucleotide identity with pathogenic proteobacteria. Perfect identity between antibiotic resistance genes in farmland soil bacteria and human pathogens suggests direct transfer. Soil microbiota represent one of the ancient evolutionary origins of antibiotic resistance and have been proposed as a reservoir of resistance genes available for exchange with clinical pathogens. Using a high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo assembly of short-read sequence data from functional selections (termed PARFuMS), we provide evidence for recent exchange of antibiotic resistance genes between environmental bacteria and clinical pathogens. We describe multidrug-resistant soil bacteria containing resistance cassettes against five classes of antibiotics (β-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that have perfect nucleotide identity to genes from diverse human pathogens. This identity encompasses noncoding regions as well as multiple mobilization sequences, offering not only evidence of lateral exchange but also a mechanism by which antibiotic resistance disseminates.


Science | 2009

Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora

Morten Otto Alexander Sommer; Gautam Dantas; George M. Church

Hidden Pockets of Resistance Groups of bacteria indulge in gene swapping at frequencies correlated with prevailing selection pressures and phylogenetic relatedness. When assaulted by antibiotics, antibiotic resistance genes become favored currency for exchange among bacteria. During sequencing of human gut microflora, Sommer et al. (p. 1128) found a very large reservoir of distinct genes that, when put into Escherichia coli, conferred resistance to a wide range of drugs. By contrast, analysis of the culturable aerobic gut microbiome, which constitutes a tiny fraction of the entire gut flora, revealed resistance genes highly similar to those harbored by human pathogens. Although there is a risk of novel modes of antibiotic resistance emerging from this reservoir, because they are evolutionarily distant, gene transfer between pathogens and the poorly known majority of the microbiome might actually be quite restricted. Large numbers of previously unidentified antibiotic resistance genes occur in gut bacteria. To understand the process by which antibiotic resistance genes are acquired by human pathogens, we functionally characterized the resistance reservoir in the microbial flora of healthy individuals. Most of the resistance genes we identified using culture-independent sampling have not been previously identified and are evolutionarily distant from known resistance genes. By contrast, nearly half of the resistance genes we identified in cultured aerobic gut isolates (a small subset of the gut microbiome) are identical to resistance genes harbored by major pathogens. The immense diversity of resistance genes in the human microbiome could contribute to future emergence of antibiotic resistance in human pathogens.


Nature Reviews Microbiology | 2011

Tackling antibiotic resistance

Karen Bush; Patrice Courvalin; Gautam Dantas; Julian Davies; Barry I. Eisenstein; George A. Jacoby; Roy Kishony; Barry N. Kreiswirth; Elizabeth Kutter; Stephen A. Lerner; Stuart B. Levy; Olga Lomovskaya; Jeffrey H. Miller; Shahriar Mobashery; Laura J. V. Piddock; Steven Projan; Christopher M. Thomas; Alexander Tomasz; Paul M. Tulkens; Timothy R. Walsh; James D. Watson; Jan A. Witkowski; Wolfgang Witte; Gerry Wright; Pamela J. Yeh; Helen I. Zgurskaya

The development and spread of antibiotic resistance in bacteria is a universal threat to both humans and animals that is generally not preventable but can nevertheless be controlled, and it must be tackled in the most effective ways possible. To explore how the problem of antibiotic resistance might best be addressed, a group of 30 scientists from academia and industry gathered at the Banbury Conference Centre in Cold Spring Harbor, New York, USA, from 16 to 18 May 2011. From these discussions there emerged a priority list of steps that need to be taken to resolve this global crisis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice

Andrew L. Goodman; George Kallstrom; Jeremiah J. Faith; Alejandro Reyes; Aimee Moore; Gautam Dantas; Jeffrey I. Gordon

The proportion of the human gut bacterial community that is recalcitrant to culture remains poorly defined. In this report, we combine high-throughput anaerobic culturing techniques with gnotobiotic animal husbandry and metagenomics to show that the human fecal microbiota consists largely of taxa and predicted functions that are represented in its readily cultured members. When transplanted into gnotobiotic mice, complete and cultured communities exhibit similar colonization dynamics, biogeographical distribution, and responses to dietary perturbations. Moreover, gnotobiotic mice can be used to shape these personalized culture collections to enrich for taxa suited to specific diets. We also demonstrate that thousands of isolates from a single donor can be clonally archived and taxonomically mapped in multiwell format to create personalized microbiota collections. Retrieving components of a microbiota that have coexisted in single donors who have physiologic or disease phenotypes of interest and reuniting them in various combinations in gnotobiotic mice should facilitate preclinical studies designed to determine the degree to which tractable bacterial taxa are able to transmit donor traits or influence host biology.


Science | 2008

Bacteria Subsisting on Antibiotics

Gautam Dantas; Morten Otto Alexander Sommer; Rantimi D. Oluwasegun; George M. Church

Antibiotics are a crucial line of defense against bacterial infections. Nevertheless, several antibiotics are natural products of microorganisms that have as yet poorly appreciated ecological roles in the wider environment. We isolated hundreds of soil bacteria with the capacity to grow on antibiotics as a sole carbon source. Of 18 antibiotics tested, representing eight major classes of natural and synthetic origin, 13 to 17 supported the growth of clonal bacteria from each of 11 diverse soils. Bacteria subsisting on antibiotics are surprisingly phylogenetically diverse, and many are closely related to human pathogens. Furthermore, each antibiotic-consuming isolate was resistant to multiple antibiotics at clinically relevant concentrations. This phenomenon suggests that this unappreciated reservoir of antibiotic-resistance determinants can contribute to the increasing levels of multiple antibiotic resistance in pathogenic bacteria.


Journal of Molecular Biology | 2003

A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins.

Gautam Dantas; Brian Kuhlman; David Callender; Michelle Wong; David Baker

A previously developed computer program for protein design, RosettaDesign, was used to predict low free energy sequences for nine naturally occurring protein backbones. RosettaDesign had no knowledge of the naturally occurring sequences and on average 65% of the residues in the designed sequences differ from wild-type. Synthetic genes for ten completely redesigned proteins were generated, and the proteins were expressed, purified, and then characterized using circular dichroism, chemical and temperature denaturation and NMR experiments. Although high-resolution structures have not yet been determined, eight of these proteins appear to be folded and their circular dichroism spectra are similar to those of their wild-type counterparts. Six of the proteins have stabilities equal to or up to 7kcal/mol greater than their wild-type counterparts, and four of the proteins have NMR spectra consistent with a well-packed, rigid structure. These encouraging results indicate that the computational protein design methods can, with significant reliability, identify amino acid sequences compatible with a target protein backbone.


Nature | 2014

Bacterial phylogeny structures soil resistomes across habitats.

Kevin J. Forsberg; Sanket Patel; Molly K. Gibson; Christian L. Lauber; Rob Knight; Noah Fierer; Gautam Dantas

Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.


Science Advances | 2015

The microbiome of uncontacted Amerindians

Jose C. Clemente; Erica C. Pehrsson; Martin J. Blaser; Kuldip Sandhu; Zhan Gao; Bin Wang; Magda Magris; Glida Hidalgo; Monica Contreras; Oscar Noya-Alarcón; Orlana Lander; Jeremy McDonald; Mike Cox; Jens Walter; Phaik Lyn Oh; Jean F. Ruiz; Selena Rodriguez; Nan Shen; Se Jin Song; Jessica L. Metcalf; Rob Knight; Gautam Dantas; M. Gloria Dominguez-Bello

Fecal, oral, and skin biomes of isolated Amerindians show higher human bacterial diversity including antibiotic resistance genes. Most studies of the human microbiome have focused on westernized people with life-style practices that decrease microbial survival and transmission, or on traditional societies that are currently in transition to westernization. We characterize the fecal, oral, and skin bacterial microbiome and resistome of members of an isolated Yanomami Amerindian village with no documented previous contact with Western people. These Yanomami harbor a microbiome with the highest diversity of bacteria and genetic functions ever reported in a human group. Despite their isolation, presumably for >11,000 years since their ancestors arrived in South America, and no known exposure to antibiotics, they harbor bacteria that carry functional antibiotic resistance (AR) genes, including those that confer resistance to synthetic antibiotics and are syntenic with mobilization elements. These results suggest that westernization significantly affects human microbiome diversity and that functional AR genes appear to be a feature of the human microbiome even in the absence of exposure to commercial antibiotics. AR genes are likely poised for mobilization and enrichment upon exposure to pharmacological levels of antibiotics. Our findings emphasize the need for extensive characterization of the function of the microbiome and resistome in remote nonwesternized populations before globalization of modern practices affects potentially beneficial bacteria harbored in the human body.


The ISME Journal | 2015

Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology

Molly K. Gibson; Kevin J. Forsberg; Gautam Dantas

Antibiotic resistance is a dire clinical problem with important ecological dimensions. While antibiotic resistance in human pathogens continues to rise at alarming rates, the impact of environmental resistance on human health is still unclear. To investigate the relationship between human-associated and environmental resistomes, we analyzed functional metagenomic selections for resistance against 18 clinically relevant antibiotics from soil and human gut microbiota as well as a set of multidrug-resistant cultured soil isolates. These analyses were enabled by Resfams, a new curated database of protein families and associated highly precise and accurate profile hidden Markov models, confirmed for antibiotic resistance function and organized by ontology. We demonstrate that the antibiotic resistance functions that give rise to the resistance profiles observed in environmental and human-associated microbial communities significantly differ between ecologies. Antibiotic resistance functions that most discriminate between ecologies provide resistance to β-lactams and tetracyclines, two of the most widely used classes of antibiotics in the clinic and agriculture. We also analyzed the antibiotic resistance gene composition of over 6000 sequenced microbial genomes, revealing significant enrichment of resistance functions by both ecology and phylogeny. Together, our results indicate that environmental and human-associated microbial communities harbor distinct resistance genes, suggesting that antibiotic resistance functions are largely constrained by ecology.


Current Opinion in Microbiology | 2011

Antibiotics and the resistant microbiome

Morten Oa Sommer; Gautam Dantas

Since the discovery and clinical application of antibiotics, pathogens and the human microbiota have faced a near continuous exposure to these selective agents. A well-established consequence of this exposure is the evolution of multidrug-resistant pathogens, which can become virtually untreatable. Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years. Additionally, culture-independent functional characterization of the resistance genes from the microbiome has demonstrated a close evolutionary relationship between resistance genes in the microbiome and in pathogens. Application of these techniques and novel cultivation methods are expected to significantly expand our understanding of the interplay between antibiotics and the microbiome.

Collaboration


Dive into the Gautam Dantas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carey-Ann D. Burnham

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kevin J. Forsberg

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Molly K. Gibson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sanket Patel

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meghan Wallace

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bin Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Gasparrini

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David Baker

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge