Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanket Patel is active.

Publication


Featured researches published by Sanket Patel.


Nature | 2014

Bacterial phylogeny structures soil resistomes across habitats.

Kevin J. Forsberg; Sanket Patel; Molly K. Gibson; Christian L. Lauber; Rob Knight; Noah Fierer; Gautam Dantas

Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.


Nature | 2016

Interconnected microbiomes and resistomes in low-income human habitats

Erica C. Pehrsson; Pablo Tsukayama; Sanket Patel; Melissa Mejía-Bautista; Giordano Sosa-Soto; Karla M. Navarrete; Maritza Calderon; Lilia Cabrera; William Hoyos-Arango; M. Teresita Bertoli; Douglas E. Berg; Robert H. Gilman; Gautam Dantas

Antibiotic-resistant infections annually claim hundreds of thousands of lives worldwide. This problem is exacerbated by exchange of resistance genes between pathogens and benign microbes from diverse habitats. Mapping resistance gene dissemination between humans and their environment is a public health priority. Here we characterized the bacterial community structure and resistance exchange networks of hundreds of interconnected human faecal and environmental samples from two low-income Latin American communities. We found that resistomes across habitats are generally structured by bacterial phylogeny along ecological gradients, but identified key resistance genes that cross habitat boundaries and determined their association with mobile genetic elements. We also assessed the effectiveness of widely used excreta management strategies in reducing faecal bacteria and resistance genes in these settings representative of low- and middle-income countries. Our results lay the foundation for quantitative risk assessment and surveillance of resistance gene dissemination across interconnected habitats in settings representing over two-thirds of the world’s population.


PLOS ONE | 2013

Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes

Aimee Moore; Sanket Patel; Kevin J. Forsberg; Bin Wang; Gayle J. Bentley; Yasmin Razia; Xuan Qin; Phillip I. Tarr; Gautam Dantas

Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome), yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure), and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000), and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301). We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway). This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective antibiotic pressure in the human host, and that cryptic gut microbes are an important resistance reservoir. The observed transferability of gut-associated resistance genes to a gram-negative (E. coli) host also suggests that the potential for gut-associated resistomes to threaten human health by mediating antibiotic resistance in pathogens warrants further investigation.


Chemistry & Biology | 2015

The Tetracycline Destructases: A Novel Family of Tetracycline-Inactivating Enzymes

Kevin J. Forsberg; Sanket Patel; Timothy A. Wencewicz; Gautam Dantas

Enzymes capable of inactivating tetracycline are paradoxically rare compared with enzymes that inactivate other natural-product antibiotics. We describe a family of flavoenzymes, previously unrecognizable as resistance genes, which are capable of degrading tetracycline antibiotics. From soil functional metagenomic selections, we discovered nine genes that confer high-level tetracycline resistance by enzymatic inactivation. We also demonstrate that a tenth enzyme, an uncharacterized homolog in the human pathogen Legionella longbeachae, similarly inactivates tetracycline. These enzymes catalyze the oxidation of tetracyclines in vitro both by known mechanisms and via previously undescribed activity. Tetracycline-inactivation genes were identified in diverse soil types, encompass substantial sequence diversity, and are adjacent to genes implicated in horizontal gene transfer. Because tetracycline inactivation is scarcely observed in hospitals, these enzymes may fill an empty niche in pathogenic organisms, and should therefore be monitored for their dissemination potential into the clinic.


Frontiers in Microbiology | 2016

Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data.

Mitchell W. Pesesky; Tahir Hussain; Meghan Wallace; Sanket Patel; Saadia Andleeb; Carey-Ann D. Burnham; Gautam Dantas

The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitates initial use of empiric (frequently broad-spectrum) antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0 and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance factors and incomplete genome assembly confounded the rules-based algorithm, resulting in predictions based on gene family, rather than on knowledge of the specific variant found. Low-frequency resistance caused errors in the machine-learning algorithm because those genes were not seen or seen infrequently in the test set. We also identified an example of variability in the phenotype-based results that led to disagreement with both genotype-based methods. Genotype-based antimicrobial susceptibility testing shows great promise as a diagnostic tool, and we outline specific research goals to further refine this methodology.


Applied and Environmental Microbiology | 2016

Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes.

Kevin J. Forsberg; Sanket Patel; Evan Witt; Bin Wang; Tyler Ellison; Gautam Dantas

ABSTRACT The production of fuels or chemicals from lignocellulose currently requires thermochemical pretreatment to release fermentable sugars. These harsh conditions also generate numerous small-molecule inhibitors of microbial growth and fermentation, limiting production. We applied small-insert functional metagenomic selections to discover genes that confer microbial tolerance to these inhibitors, identifying both individual genes and general biological processes associated with tolerance to multiple inhibitory compounds. Having screened over 248 Gb of DNA cloned from 16 diverse soil metagenomes, we describe gain-of-function tolerance against acid, alcohol, and aldehyde inhibitors derived from hemicellulose and lignin, demonstrating that uncultured soil microbial communities hold tremendous genetic potential to address the toxicity of pretreated lignocellulose. We recovered genes previously known to confer tolerance to lignocellulosic inhibitors as well as novel genes that confer tolerance via unknown functions. For instance, we implicated galactose metabolism in overcoming the toxicity of lignin monomers and identified a decarboxylase that confers tolerance to ferulic acid; this enzyme has been shown to catalyze the production of 4-vinyl guaiacol, a valuable precursor to vanillin production. These metagenomic tolerance genes can enable the flexible design of hardy microbial catalysts, customized to withstand inhibitors abundant in specific bioprocessing applications.


Methods of Molecular Biology | 2017

Functional Metagenomics to Study Antibiotic Resistance

Manish Boolchandani; Sanket Patel; Gautam Dantas

The construction and screening of metagenomic expression libraries has great potential to identify novel genes and their functions. Here, we describe metagenomic library preparation from fecal DNA, screening of libraries for antibiotic resistance genes (ARGs), massively parallel DNA sequencing of the enriched DNA fragments, and a computational pipeline for high-throughput assembly and annotation of functionally selected DNA.


mSystems | 2018

Characterization of wild and captive baboon gut microbiota and their antibiotic resistomes

Pablo Tsukayama; Manish Boolchandani; Sanket Patel; Erica C. Pehrsson; Molly K. Gibson; Kenneth L. Chiou; Clifford J. Jolly; Jeffrey Rogers; Jane E. Phillips-Conroy; Gautam Dantas

Antibiotic exposure results in acute and persistent shifts in the composition and function of microbial communities associated with vertebrate hosts. However, little is known about the state of these communities in the era before the widespread introduction of antibiotics into clinical and agricultural practice. We characterized the fecal microbiota and antibiotic resistomes of wild and captive baboon populations to understand the effect of human exposure and to understand how the primate microbiota may have been altered during the antibiotic era. We used culture-independent and bioinformatics methods to identify functional resistance genes in the guts of wild and captive baboons and show that exposure to humans is associated with changes in microbiota composition and resistome expansion compared to wild baboon groups. Our results suggest that captivity and lifestyle changes associated with human contact can lead to marked changes in the ecology of primate gut communities. ABSTRACT Environmental microbes have harbored the capacity for antibiotic production for millions of years, spanning the evolution of humans and other vertebrates. However, the industrial-scale use of antibiotics in clinical and agricultural practice over the past century has led to a substantial increase in exposure of these agents to human and environmental microbiota. This perturbation is predicted to alter the ecology of microbial communities and to promote the evolution and transfer of antibiotic resistance (AR) genes. We studied wild and captive baboon populations to understand the effects of exposure to humans and human activities (e.g., antibiotic therapy) on the composition of the primate fecal microbiota and the antibiotic-resistant genes that it collectively harbors (the “resistome”). Using a culture-independent metagenomic approach, we identified functional antibiotic resistance genes in the gut microbiota of wild and captive baboon groups and saw marked variation in microbiota architecture and resistomes across habitats and lifeways. Our results support the view that antibiotic resistance is an ancient feature of gut microbial communities and that sharing habitats with humans may have important effects on the structure and function of the primate microbiota. IMPORTANCE Antibiotic exposure results in acute and persistent shifts in the composition and function of microbial communities associated with vertebrate hosts. However, little is known about the state of these communities in the era before the widespread introduction of antibiotics into clinical and agricultural practice. We characterized the fecal microbiota and antibiotic resistomes of wild and captive baboon populations to understand the effect of human exposure and to understand how the primate microbiota may have been altered during the antibiotic era. We used culture-independent and bioinformatics methods to identify functional resistance genes in the guts of wild and captive baboons and show that exposure to humans is associated with changes in microbiota composition and resistome expansion compared to wild baboon groups. Our results suggest that captivity and lifestyle changes associated with human contact can lead to marked changes in the ecology of primate gut communities.


Frontiers in Microbiology | 2018

Superficieibacter electus gen. nov., sp. nov., an Extended-Spectrum β-Lactamase Possessing Member of the Enterobacteriaceae Family, Isolated From Intensive Care Unit Surfaces.

Robert F. Potter; Alaric W D-Souza; Meghan Wallace; Angela Shupe; Sanket Patel; Danish Gul; Jennie H. Kwon; Wandy L. Beatty; Saadia Andleeb; Carey-Ann D. Burnham; Gautam Dantas

Two Gram-negative bacilli strains, designated BP-1(T) and BP-2, were recovered from two different Intensive Care Unit surfaces during a longitudinal survey in Pakistan. Both strains were unidentified using the bioMerieux VITEK MS IVD v2.3.3 and Bruker BioTyper MALDI-TOF mass spectrometry platforms. To more precisely determine the taxonomic identity of BP-1(T) and BP-2, we employed a biochemical and phylogenomic approach. The 16S rRNA gene sequence of strain BP-1(T) had the highest identity to Citrobacter farmeri CDC 2991-81(T) (98.63%) Citrobacter amalonaticus CECT 863(T) (98.56%), Citrobacter sedlakii NBRC 105722(T) (97.74%) and Citrobacter rodentium NBRC 105723(T) (97.74%). The biochemical utilization scheme of BP-1(T) using the Analytic Profile Index for Enterobacteriaceae (API20E) indicated its enzymatic functions are unique within the Enterobacteriaceae but most closely resemble Kluyvera spp., Enterobacter cloacae and Citrobacter koseri/farmeri. Phylogenomic analysis of the shared genes between BP-1(T), BP-2 and type strains from Kluyvera, Citrobacter, Escherichia, Salmonella, Kosakonia, Siccibacter and Shigella indicate that BP-1(T) and BP-2 isolates form a distinct branch from these genera. Average Nucleotide Identity analysis indicates that BP-1(T) and BP-2 are the same species. The biochemical and phylogenomic analysis indicate strains BP-1(T) and BP-2 represent a novel species from a new genus within the Enterobacteriaceae family, for which the name Superficieibacter electus gen. nov., sp. nov., is proposed. The type strain is BP-1(T) (= ATCC BAA-2937, = NBRC 113412).


Genome Announcements | 2017

Draft genome sequence of the blaOXA-436- and blaNDM-1-harboring Shewanella putrefaciens SA70 isolate

Robert F. Potter; Alaric W. D’Souza; Meghan Wallace; Angela Shupe; Sanket Patel; Danish Gul; Jennie H. Kwon; Saadia Andleeb; Carey-Ann D. Burnham; Gautam Dantas

ABSTRACT We sequenced a carbapenem-resistant Shewanella putrefaciens isolate cultured from the sink handle of a Pakistan hospital room. Assembly annotation indicates that the isolate has a chromosomal blaOXA-436 carbapenemase and a plasmid-borne blaNDM-1 gene. To our knowledge, this is the first report of a Shewanella species harboring blaNDM.

Collaboration


Dive into the Sanket Patel's collaboration.

Top Co-Authors

Avatar

Gautam Dantas

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kevin J. Forsberg

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Carey-Ann D. Burnham

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Meghan Wallace

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Saadia Andleeb

National University of Sciences and Technology

View shared research outputs
Top Co-Authors

Avatar

Angela Shupe

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jennie H. Kwon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert F. Potter

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alaric W. D’Souza

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bin Wang

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge