Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas W. Gale is active.

Publication


Featured researches published by Nicholas W. Gale.


Nature | 2000

Vascular-specific growth factors and blood vessel formation.

George D. Yancopoulos; Samuel Davis; Nicholas W. Gale; John S. Rudge; Stanley J. Wiegand; Jocelyn Holash

A recent explosion in newly discovered vascular growth factors has coincided with exploitation of powerful new genetic approaches for studying vascular development. An emerging rule is that all of these factors must be used in perfect harmony to form functional vessels. These new findings also demand re-evaluation of therapeutic efforts aimed at regulating blood vessel growth in ischaemia, cancer and other pathological settings.


Nature | 2006

Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis

Irene Noguera-Troise; Christopher Daly; Nicholas J. Papadopoulos; Sandra Coetzee; Pat Boland; Nicholas W. Gale; Hsin Chieh Lin; George D. Yancopoulos; Gavin Thurston

Tumour growth requires accompanying expansion of the host vasculature, with tumour progression often correlated with vascular density. Vascular endothelial growth factor (VEGF) is the best-characterized inducer of tumour angiogenesis. We report that VEGF dynamically regulates tumour endothelial expression of Delta-like ligand 4 (Dll4), which was previously shown to be absolutely required for normal embryonic vascular development. To define Dll4 function in tumour angiogenesis, we manipulated this pathway in murine tumour models using several approaches. Here we show that blockade resulted in markedly increased tumour vascularity, associated with enhanced angiogenic sprouting and branching. Paradoxically, this increased vascularity was non-productive—as shown by poor perfusion and increased hypoxia, and most importantly, by decreased tumour growth—even for tumours resistant to anti-VEGF therapy. Thus, VEGF-induced Dll4 acts as a negative regulator of tumour angiogenesis; its blockade results in a striking uncoupling of tumour growth from vessel density, presenting a novel therapeutic approach even for tumours resistant to anti-VEGF therapies.


Developmental Cell | 2002

Angiopoietin-2 Is Required for Postnatal Angiogenesis and Lymphatic Patterning, and Only the Latter Role Is Rescued by Angiopoietin-1

Nicholas W. Gale; Gavin Thurston; Sean F. Hackett; Roumiana Renard; Quan Wang; Joyce McClain; Cliff Martin; Charles L. Witte; Marlys H. Witte; David G. Jackson; Chitra Suri; Peter A. Campochiaro; Stanley J. Wiegand; George D. Yancopoulos

VEGF and Angiopoietin-1 requisitely collaborate during blood vessel development. While Angiopoietin-1 obligately activates its Tie2 receptor, Angiopoietin-2 can activate Tie2 on some cells, while it blocks Tie2 activation on others. Our analysis of mice lacking Angiopoietin-2 reveals that Angiopoietin-2 is dispensable for embryonic vascular development but is requisite for subsequent angiogenic remodeling. Unexpectedly, mice lacking Angiopoietin-2 also exhibit major lymphatic vessel defects. Genetic rescue with Angiopoietin-1 corrects the lymphatic, but not the angiogenesis, defects, suggesting that Angiopoietin-2 acts as a Tie2 agonist in the former setting, but as an antagonist in the latter setting. Our studies define a vascular growth factor whose primary role is in postnatal angiogenic remodeling and also demonstrate that members of the VEGF and Angiopoietin families collaborate during development of the lymphatic vasculature.


Neuron | 1996

Eph Receptors and Ligands Comprise Two Major Specificity Subclasses and Are Reciprocally Compartmentalized during Embryogenesis

Nicholas W. Gale; Sacha Holland; David M. Valenzuela; Ann M. Flenniken; Li Pan; Terrence E Ryan; Mark Henkemeyer; Klaus Strebhardt; Hisamaru Hirai; David G. Wilkinson; Tony Pawson; Samuel Davis; George D. Yancopoulos

We report that the many Eph-related receptor tyrosine kinases, and their numerous membrane-bound ligands, can each be grouped into only two major specificity subclasses. Receptors in a given subclass bind most members of a corresponding ligand subclass. The physiological relevance of these groupings is suggested by viewing the collective distributions of all members of a subclass. These composite distributions, in contrast with less informative patterns seen with individual members of the family, reveal that the developing embryo is subdivided into domains defined by reciprocal and apparently mutually exclusive expression of a receptor subclass and its corresponding ligands. Receptors seem to encounter their ligands only at the interface between these domains. This reciprocal compartmentalization implicates the Eph family in the formation of spatial boundaries that may help to organize the developing body plan.


Journal of Clinical Investigation | 2008

CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors

Sergey V. Shmelkov; Jason M. Butler; Andrea T. Hooper; Adília Hormigo; Jared S Kushner; Till Milde; Ryan St Clair; Muhamed Baljevic; Ian White; David K. Jin; Amy Chadburn; Andrew J. Murphy; David M. Valenzuela; Nicholas W. Gale; Gavin Thurston; George D. Yancopoulos; Michael I. D’Angelica; Nancy E. Kemeny; David Lyden; Shahin Rafii

Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10-/-CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133- population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133- metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133- cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24-), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133(- )subset, which is also capable of tumor initiation in NOD/SCID mice.


Nature Medicine | 2006

Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation

Ulrike Fiedler; Yvonne Reiss; Marion Scharpfenecker; Verena Grunow; Stefanie Koidl; Gavin Thurston; Nicholas W. Gale; Martin Witzenrath; Simone Rosseau; Norbert Suttorp; Astrid Sobke; Matthias Herrmann; Klaus T. Preissner; Peter Vajkoczy; Hellmut G. Augustin

The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1–mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus–induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2−/− mice. Intravital microscopy showed normal TNF-α–induced leukocyte rolling in the vasculature of Angpt2−/−mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-α and modulating TNF-α–induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.


Cell | 2000

EphB receptors interact with NMDA receptors and regulate excitatory synapse formation.

Matthew B. Dalva; Mari A. Takasu; Michael Z. Lin; Steven M. Shamah; Linda Hu; Nicholas W. Gale; Michael E. Greenberg

EphB receptor tyrosine kinases are enriched at synapses, suggesting that these receptors play a role in synapse formation or function. We find that EphrinB binding to EphB induces a direct interaction of EphB with NMDA-type glutamate receptors. This interaction occurs at the cell surface and is mediated by the extracellular regions of the two receptors, but does not require the kinase activity of EphB. The kinase activity of EphB may be important for subsequent steps in synapse formation, as perturbation of EphB tyrosine kinase activity affects the number of synaptic specializations that form in cultured neurons. These findings indicate that EphrinB activation of EphB promotes an association of EphB with NMDA receptors that may be critical for synapse development or function.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting

Ivan B. Lobov; R. A. Renard; Nick Papadopoulos; Nicholas W. Gale; Gavin Thurston; George D. Yancopoulos; Stanley J. Wiegand

Genetic deletion studies have shown that haploinsufficiency of Delta-like ligand (Dll) 4, a transmembrane ligand for the Notch family of receptors, results in major vascular defects and embryonic lethality. To better define the role of Dll4 during vascular growth and differentiation, we selected the postnatal retina as a model because its vasculature develops shortly after birth in a highly stereotypic manner, during which time it is accessible to experimental manipulation. We report that Dll4 expression is dynamically regulated by VEGF in the retinal vasculature, where it is most prominently expressed at the leading front of actively growing vessels. Deletion of a single Dll4 allele or pharmacologic inhibition of Dll4/Notch signaling by intraocular administration of either soluble Dll4-Fc or a blocking antibody against Dll4 all produced the same set of characteristic abnormalities in the developing retinal vasculature, most notably enhanced angiogenic sprouting and increased endothelial cell proliferation, resulting in the formation of a denser and more highly interconnected superficial capillary plexus. In a model of ischemic retinopathy, Dll4 blockade also enhanced angiogenic sprouting and regrowth of lost retinal vessels while suppressing ectopic pathological neovascularization. Our data demonstrate that Dll4 is induced by VEGF as a negative feedback regulator and acts to prevent overexuberant angiogenic sprouting, promoting the timely formation of a well differentiated vascular network.


Nature Biotechnology | 2003

High-throughput engineering of the mouse genome coupled withhigh-resolution expression analysis

David M. Valenzuela; Andrew J. Murphy; David Frendewey; Nicholas W. Gale; Aris N. Economides; Wojtek Auerbach; William Poueymirou; Niels C. Adams; Jose Rojas; Jason Yasenchak; Rostislav Chernomorsky; Marylene Boucher; Andrea L Elsasser; Lakeisha Esau; Jenny Zheng; Jennifer Griffiths; Xiaorong Wang; Hong Su; Yingzi Xue; Melissa G. Dominguez; Irene Noguera; Richard Torres; Lynn Macdonald; A. Francis Stewart; Thomas M. DeChiara; George D. Yancopoulos

One of the most effective approaches for determining gene function involves engineering mice with mutations or deletions in endogenous genes of interest. Historically, this approach has been limited by the difficulty and time required to generate such mice. We describe the development of a high-throughput and largely automated process, termed VelociGene, that uses targeting vectors based on bacterial artificial chromosomes (BACs). VelociGene permits genetic alteration with nucleotide precision, is not limited by the size of desired deletions, does not depend on isogenicity or on positive–negative selection, and can precisely replace the gene of interest with a reporter that allows for high-resolution localization of target-gene expression. We describe custom genetic alterations for hundreds of genes, corresponding to about 0.5–1.0% of the entire genome. We also provide dozens of informative expression patterns involving cells in the nervous system, immune system, vasculature, skeleton, fat and other tissues.*Note: In the author list of the AOP version of this article, the name of author Rostislav Chernomorsky was misspelled Rostislav Chernomorski. This has been corrected in the online and print versions of the article.


Nature Neuroscience | 2000

Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone.

Joanne C. Conover; Fiona Doetsch; Jose Manuel Garcia-Verdugo; Nicholas W. Gale; George D. Yancopoulos; Arturo Alvarez-Buylla

The subventricular zone (SVZ) of the lateral ventricles, the largest remaining germinal zone of the adult mammalian brain, contains an extensive network of neuroblasts migrating rostrally to the olfactory bulb. Little is known about the endogenous proliferation signals for SVZ neural stem cells or guidance cues along the migration pathway. Here we show that the receptor tyrosine kinases EphB1–3 and EphA4 and their transmembrane ligands, ephrins-B2/3, are expressed by cells of the SVZ. Electron microscopy revealed ephrin-B ligands associated with SVZ astrocytes, which function as stem cells in this germinal zone. A three-day infusion of the ectodomain of either EphB2 or ephrin-B2 into the lateral ventricle disrupted migration of neuroblasts and increased cell proliferation. These results suggest that Eph/ephrin signaling is involved in the migration of neuroblasts in the adult SVZ and in either direct or indirect regulation of cell proliferation.

Collaboration


Dive into the Nicholas W. Gale's collaboration.

Researchain Logo
Decentralizing Knowledge