Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geert-Jan van Gemert is active.

Publication


Featured researches published by Geert-Jan van Gemert.


Cell | 2001

A Central Role for P48/45 in Malaria Parasite Male Gamete Fertility

Melissa R. van Dijk; Chris J. Janse; Joanne Thompson; Andrew P. Waters; Joanna A. M. Braks; Huub J. Dodemont; Henk Stunnenberg; Geert-Jan van Gemert; Robert W. Sauerwein; Wijnand Eling

Fertilization and zygote development are obligate features of the malaria parasite life cycle and occur during parasite transmission to mosquitoes. The surface protein PFS48/45 is expressed by male and female gametes of Plasmodium falciparum and PFS48/45 antibodies prevent zygote development and transmission. Here, gene disruption was used to show that Pfs48/45 and the ortholog Pbs48/45 from a rodent malaria parasite P. berghei play a conserved and important role in fertilization. p48/45- parasites had a reduced capacity to produce oocysts in mosquitoes due to greatly reduced zygote formation. Unexpectedly, only male gamete fertility of p48/45- parasites was affected, failing to penetrate otherwise fertile female gametes. P48/45 is shown to be a surface protein of malaria parasites with a demonstrable role in fertilization.


Journal of Biological Chemistry | 2004

A Role for Apical Membrane Antigen 1 during Invasion of Hepatocytes by Plasmodium falciparum Sporozoites

Olivier Silvie; Jean-François Franetich; Markus S. Mueller; Anthony Siau; Myriam Bodescot; Eric Rubinstein; Laurent Hannoun; Yupin Charoenvit; Clemens H. M. Kocken; Alan W. Thomas; Geert-Jan van Gemert; Robert W. Sauerwein; Michael J. Blackman; Robin F. Anders; Gerd Pluschke; Dominique Mazier

Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and invade hepatocytes as a first and obligatory step of the parasite life cycle in man. Hepatocyte invasion involves proteins secreted from parasite vesicles called micronemes, the most characterized being the thrombospondin-related adhesive protein (TRAP). Here we investigated the expression and function of another microneme protein recently identified in Plasmodium falciparum sporozoites, apical membrane antigen 1 (AMA-1). P. falciparum AMA-1 is expressed in sporozoites and is lost after invasion of hepatocytes, and anti-AMA-1 antibodies inhibit sporozoite invasion, suggesting that the protein is involved during invasion of hepatocytes. As observed with TRAP, AMA-1 is initially mostly sequestered within the sporozoite. Upon microneme exocytosis, AMA-1 and TRAP relocate to the sporozoite surface, where they are proteolytically cleaved, resulting in the shedding of soluble fragments. A subset of serine protease inhibitors blocks the processing and shedding of both AMA-1 and TRAP and inhibits sporozoite infectivity, suggesting that interfering with sporozoite proteolytic processing may constitute a valuable strategy to prevent hepatocyte infection.


The Lancet | 2011

Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study

Meta Roestenberg; Anne C. Teirlinck; Matthew McCall; Karina Teelen; Krystelle Nganou Makamdop; Jorien Wiersma; Theo Arens; Pieter Beckers; Geert-Jan van Gemert; Marga van de Vegte-Bolmer; Andre van der Ven; Adrian J. F. Luty; Cornelus C. Hermsen; Robert W. Sauerwein

BACKGROUND We have shown that immunity to infection with Plasmodium falciparum can be induced experimentally in malaria-naive volunteers through immunisation by bites of infected mosquitoes while simultaneously preventing disease with chloroquine prophylaxis. This immunity was associated with parasite-specific production of interferon γ and interleukin 2 by pluripotent effector memory cells in vitro. We aim to explore the persistence of protection and immune responses in the same volunteers. METHODS In an open-label study at the Radboud University Nijmegen Medical Centre (Nijmegen, Netherlands), from November to December, 2009, we rechallenged previously immune volunteers (28 months after immunisation) with the bites of five mosquitoes infected with P falciparum. Newly recruited malaria-naive volunteers served as infection controls. Our primary outcome was the detection of blood-stage parasitaemia by microscopy. We assessed the kinetics of parasitaemia with real-time quantitative PCR (rtPCR) and recorded clinical signs and symptoms. In-vitro production of interferon γ and interleukin 2 by effector memory T cells was studied after stimulation with sporozoites and red blood cells infected with P falciparum. Differences in cellular immune responses between the study groups were assessed with the Mann-Whitney test. This study is registered with ClinicalTrials.gov, number NCT00757887. FINDINGS Four of six immune volunteers were microscopically negative after rechallenge. rtPCR-based detection of blood-stage parasites in these individuals was negative throughout follow-up. Patent parasitaemia was delayed in the remaining two immunised volunteers. In-vitro assays showed the long-term persistence of parasite-specific pluripotent effector memory T-cell responses in protected volunteers. The four protected volunteers reported several mild to moderate adverse events, of which the most commonly reported symptom was headache (one to three episodes per volunteer). The two patients with delayed patency had adverse events similar to those in the control group. INTERPRETATION Artificially induced immunity lasts longer than generally recorded after natural exposure; providing a new avenue of research into the mechanisms of malaria immunity. FUNDING Dioraphte Foundation.


PLOS ONE | 2009

Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging.

Ivo Ploemen; Miguel Prudêncio; Bruno Douradinha; Jai Ramesar; Jannik Fonager; Geert-Jan van Gemert; Adrian J. F. Luty; Cornelus C. Hermsen; Robert W. Sauerwein; Fernanda G. Baptista; Maria M. Mota; Andrew P. Waters; Ivo Que; Clemens W.G.M. Löwik; Shahid M. Khan; Chris J. Janse; Blandine Franke-Fayard

The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasites life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium.


PLOS Pathogens | 2008

Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity

Edwin Lasonder; Chris J. Janse; Geert-Jan van Gemert; Gunnar R. Mair; Adriaan M. W. Vermunt; Bruno Douradinha; Vera van Noort; Martijn A. Huynen; Adrian J. F. Luty; Hans Kroeze; Shahid M. Khan; Robert W. Sauerwein; Andrew P. Waters; Matthias Mann; Hendrik G. Stunnenberg

Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito—early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans.


PLOS Pathogens | 2010

Three Members of the 6-cys Protein Family of /Plasmodium/ Play a Role in Gamete Fertility

Melissa R. van Dijk; Ben C. L. van Schaijk; Shahid M. Khan; Maaike W. van Dooren; Jai Ramesar; Szymon Kaczanowski; Geert-Jan van Gemert; Hans Kroeze; Hendrik G. Stunnenberg; Wijnand Eling; Robert W. Sauerwein; Andrew P. Waters; Chris J. Janse

The process of fertilization is critically dependent on the mutual recognition of gametes and in Plasmodium, the male gamete surface protein P48/45 is vital to this process. This protein belongs to a family of 10 structurally related proteins, the so called 6-cys family. To identify the role of additional members of this family in Plasmodium fertilisation, we performed genetic and functional analysis on the five members of the 6-cys family that are transcribed during the gametocyte stage of P. berghei. This analysis revealed that in addition to P48/45, two members (P230 and P47) also play an essential role in the process of parasite fertilization. Mating studies between parasites lacking P230, P48/45 or P47 demonstrate that P230, like P48/45, is a male fertility factor, consistent with the previous demonstration of a protein complex containing both P48/45 and P230. In contrast, disruption of P47 results in a strong reduction of female fertility, while males remain unaffected. Further analysis revealed that gametes of mutants lacking expression of p48/45 or p230 or p47 are unable to either recognise or attach to each other. Disruption of the paralog of p230, p230p, also specifically expressed in gametocytes, had no observable effect on fertilization. These results indicate that the P. berghei 6-cys family contains a number of proteins that are either male or female specific ligands that play an important role in gamete recognition and/or attachment. The implications of low levels of fertilisation that exist even in the absence of these proteins, indicating alternative pathways of fertilisation, as well as positive selection acting on these proteins, are discussed in the context of targeting these proteins as transmission blocking vaccine candidates.


Cell Host & Microbe | 2008

Host Scavenger Receptor SR-BI Plays a Dual Role in the Establishment of Malaria Parasite Liver Infection

Michael Hannus; Miguel Prudêncio; Cécilie Martin; Lígia Antunes Gonçalves; Silvia Portugal; Sabrina Epiphanio; Akin Akinc; Philipp Hadwiger; Kerstin Jahn-Hofmann; Ingo Röhl; Geert-Jan van Gemert; Jean-François Franetich; Adrian J. F. Luty; Robert W. Sauerwein; Dominique Mazier; Victor Koteliansky; Hans-Peter Vornlocher; Christophe J. Echeverri; Maria M. Mota

An obligatory step of malaria parasite infection is Plasmodium sporozoite invasion of host hepatocytes, and host lipoprotein clearance pathways have been linked to Plasmodium liver infection. By using RNA interference to screen lipoprotein-related host factors, we show here that the class B, type I scavenger receptor (SR-BI) is the strongest regulator of Plasmodium infection among these factors. Inhibition of SR-BI function reduced P. berghei infection in Huh7 cells, and overexpression of SR-BI led to increased infection. In vivo silencing of liver SR-BI expression in mice and inhibition of SR-BI activity in human primary hepatocytes reduced infection by P. berghei and by P. falciparum, respectively. Heterozygous SR-BI(+/-) mice displayed reduced P. berghei infection rates correlating with liver SR-BI expression levels. Additional analyses revealed that SR-BI plays a dual role in Plasmodium infection, affecting both sporozoite invasion and intracellular parasite development, and may therefore constitute a good target for malaria prophylaxis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity

Else M. Bijker; Guido J. H. Bastiaens; Anne C. Teirlinck; Geert-Jan van Gemert; Wouter Graumans; Marga van de Vegte-Bolmer; Rianne Siebelink-Stoter; Theo Arens; Karina Teelen; Wiebke Nahrendorf; Edmond J. Remarque; Will Roeffen; Annemieke Jansens; Dunja Zimmerman; Martijn W. Vos; Ben C. L. van Schaijk; Jorien Wiersma; Andre van der Ven; Quirijn de Mast; Lisette van Lieshout; Jaco J. Verweij; Cornelus C. Hermsen; Anja Scholzen; Robert W. Sauerwein

Volunteers immunized under chloroquine chemoprophylaxis with Plasmodium falciparum sporozoites (CPS) develop complete, long-lasting protection against homologous sporozoite challenge. Chloroquine affects neither sporozoites nor liver-stages, but kills only asexual forms in erythrocytes once released from the liver into the circulation. Consequently, CPS immunization exposes the host to antigens from both preerythrocytic and blood stages, and induced immunity might target either of these stages. We therefore explored the life cycle stage specificity of CPS-induced protection. Twenty-five malaria-naïve volunteers were enrolled in a clinical trial, 15 of whom received CPS immunization. Five immunized subjects and five controls received a sporozoite challenge by mosquito bites, whereas nine immunized and five control subjects received an i.v. challenge with P. falciparum-infected erythrocytes. The latter approach completely bypasses preerythrocytic stages, enabling a direct comparison of protection against either life cycle stage. CPS-immunized subjects (13 of 14) developed anticircumsporozoite antibodies, whereas only one volunteer generated minimal titers against typical blood-stage antigens. IgG from CPS-immunized volunteers did not inhibit asexual blood-stage growth in vitro. All CPS-immunized subjects (5 of 5) were protected against sporozoite challenge. In contrast, nine of nine CPS-immunized subjects developed parasitemia after blood-stage challenge, with identical prepatent periods and blood-stage multiplication rates compared with controls. Intravenously challenged CPS-immunized subjects showed earlier fever and increased plasma concentrations of inflammatory markers D-dimer, IFN-γ, and monokine induced by IFN-γ than i.v. challenged controls. The complete lack of protection against blood-stage challenge indicates that CPS-induced protection is mediated by immunity against preerythrocytic stages. However, evidence is presented for immune recognition of P. falciparum-infected erythrocytes, suggesting memory responses unable to generate functional immunity.


PLOS ONE | 2011

Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery

Laurent Dembélé; Audrey Gego; Anne-Marie Zeeman; Jean-François Franetich; Olivier Silvie; Armelle Rametti; Roger Le Grand; Nathalie Dereuddre-Bosquet; Robert W. Sauerwein; Geert-Jan van Gemert; Jean-Christophe Vaillant; Alan W. Thomas; Georges Snounou; Clemens H. M. Kocken; Dominique Mazier

Background Amongst the Plasmodium species in humans, only P. vivax and P. ovale produce latent hepatic stages called hypnozoites, which are responsible for malaria episodes long after a mosquito bite. Relapses contribute to increased morbidity, and complicate malaria elimination programs. A single drug effective against hypnozoites, primaquine, is available, but its deployment is curtailed by its haemolytic potential in glucose-6-phosphate dehydrogenase deficient persons. Novel compounds are thus urgently needed to replace primaquine. Discovery of compounds active against hypnozoites is restricted to the in vivo P. cynomolgi-rhesus monkey model. Slow growing hepatic parasites reminiscent of hypnozoites had been noted in cultured P. vivax-infected hepatoma cells, but similar forms are also observed in vitro by other species including P. falciparum that do not produce hypnozoites. Methodology P. falciparum or P. cynomolgi sporozoites were used to infect human or Macaca fascicularis primary hepatocytes, respectively. The susceptibility of the slow and normally growing hepatic forms obtained in vitro to three antimalarial drugs, one active against hepatic forms including hypnozoites and two only against the growing forms, was measured. Results The non-dividing slow growing P. cynomolgi hepatic forms, observed in vitro in primary hepatocytes from the natural host Macaca fascicularis, can be distinguished from similar forms seen in P. falciparum-infected human primary hepatocytes by the differential action of selected anti-malarial drugs. Whereas atovaquone and pyrimethamine are active on all the dividing hepatic forms observed, the P. cynomolgi slow growing forms are highly resistant to treatment by these drugs, but remain susceptible to primaquine. Conclusion Resistance of the non-dividing P. cynomolgi forms to atovaquone and pyrimethamine, which do not prevent relapses, strongly suggests that these slow growing forms are hypnozoites. This represents a first step towards the development of a practical medium-throughput in vitro screening assay for novel hypnozoiticidal drugs.


Molecular Microbiology | 2006

Malaria transmission‐blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production

Saliha Eksi; Beata Czesny; Geert-Jan van Gemert; Robert W. Sauerwein; Wijnand Eling; Kim C. Williamson

Malaria transmission requires that the parasites differentiate into gametocytes prior to ingestion by a mosquito during a blood meal. Once in the mosquito midgut the gametocytes emerge from red blood cells (RBCs), fertilize, develop into ookinetes and finally infectious sporozoites. Gamete surface antigen, Pfs230, is an important malaria transmission‐blocking vaccine candidate, but its function has remained unclear. Two clones with distinct Pfs230 gene disruptions (Δ1.356 and Δ2.560) and a clone with a disruption of Pfs48/45 were used to evaluate the role of Pfs230 in the mosquito midgut. Pfs230 disruptants successfully emerge from RBCs and male gametes exflagellate producing microgametes. However, exflagellating Pfs230‐minus males, in the presence or absence of Pfs48/45, are unable to interact with RBCs and form exflagellation centres. Oocyst production and mosquito infectivity is also significantly reduced, 96–92% and 76–71% respectively. In contrast, in the Pfs230 disruptants the expression and localization of other known sexual stage‐specific antigens, including Pfs48/45, Pfs47, the Pfs230 paralogue (PfsMR5), Pfs16 or Pfs25, were not altered and the Pfs230‐minus gametes retained resistance to the alternative pathway of human complement. These results suggest that Pfs230 is the surface molecule on males that mediates RBC binding and plays an important role in oocyst development, a critical step in malaria transmission.

Collaboration


Dive into the Geert-Jan van Gemert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris J. Janse

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wouter Graumans

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shahid M. Khan

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adrian J. F. Luty

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge