Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wouter Graumans is active.

Publication


Featured researches published by Wouter Graumans.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity

Else M. Bijker; Guido J. H. Bastiaens; Anne C. Teirlinck; Geert-Jan van Gemert; Wouter Graumans; Marga van de Vegte-Bolmer; Rianne Siebelink-Stoter; Theo Arens; Karina Teelen; Wiebke Nahrendorf; Edmond J. Remarque; Will Roeffen; Annemieke Jansens; Dunja Zimmerman; Martijn W. Vos; Ben C. L. van Schaijk; Jorien Wiersma; Andre van der Ven; Quirijn de Mast; Lisette van Lieshout; Jaco J. Verweij; Cornelus C. Hermsen; Anja Scholzen; Robert W. Sauerwein

Volunteers immunized under chloroquine chemoprophylaxis with Plasmodium falciparum sporozoites (CPS) develop complete, long-lasting protection against homologous sporozoite challenge. Chloroquine affects neither sporozoites nor liver-stages, but kills only asexual forms in erythrocytes once released from the liver into the circulation. Consequently, CPS immunization exposes the host to antigens from both preerythrocytic and blood stages, and induced immunity might target either of these stages. We therefore explored the life cycle stage specificity of CPS-induced protection. Twenty-five malaria-naïve volunteers were enrolled in a clinical trial, 15 of whom received CPS immunization. Five immunized subjects and five controls received a sporozoite challenge by mosquito bites, whereas nine immunized and five control subjects received an i.v. challenge with P. falciparum-infected erythrocytes. The latter approach completely bypasses preerythrocytic stages, enabling a direct comparison of protection against either life cycle stage. CPS-immunized subjects (13 of 14) developed anticircumsporozoite antibodies, whereas only one volunteer generated minimal titers against typical blood-stage antigens. IgG from CPS-immunized volunteers did not inhibit asexual blood-stage growth in vitro. All CPS-immunized subjects (5 of 5) were protected against sporozoite challenge. In contrast, nine of nine CPS-immunized subjects developed parasitemia after blood-stage challenge, with identical prepatent periods and blood-stage multiplication rates compared with controls. Intravenously challenged CPS-immunized subjects showed earlier fever and increased plasma concentrations of inflammatory markers D-dimer, IFN-γ, and monokine induced by IFN-γ than i.v. challenged controls. The complete lack of protection against blood-stage challenge indicates that CPS-induced protection is mediated by immunity against preerythrocytic stages. However, evidence is presented for immune recognition of P. falciparum-infected erythrocytes, suggesting memory responses unable to generate functional immunity.


Antimicrobial Agents and Chemotherapy | 2012

The Spiroindolone Drug Candidate NITD609 Potently Inhibits Gametocytogenesis and Blocks Plasmodium falciparum Transmission to Anopheles Mosquito Vector

J.C. van Pelt-Koops; Helmi Pett; Wouter Graumans; M.G. van de Vegte-Bolmer; G.J.A. van Gemert; Matthias Rottmann; Bryan K. S. Yeung; Thierry T. Diagana; Robert W. Sauerwein

ABSTRACT The global malaria agenda has undergone a reorientation from control of clinical cases to entirely eradicating malaria. For that purpose, a key objective is blocking transmission of malaria parasites from humans to mosquito vectors. The new antimalarial drug candidate NITD609 was evaluated for its transmission-reducing potential and compared to a few established antimalarials (lumefantrine, artemether, primaquine), using a suite of in vitro assays. By the use of a microscopic readout, NITD609 was found to inhibit the early and late development of Plasmodium falciparum gametocytes in vitro in a dose-dependent fashion over a range of 5 to 500 nM. In addition, using the standard membrane feeding assay, NITD609 was also found to be a very effective drug in reducing transmission to the Anopheles stephensi mosquito vector. Collectively, our data suggest a strong transmission-reducing effect of NITD609 acting against different P. falciparum transmission stages.


Antimicrobial Agents and Chemotherapy | 2014

KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission

Kelli Kuhen; Arnab K. Chatterjee; Matthias Rottmann; Kerstin Gagaring; Rachel Borboa; Jennifer Buenviaje; Zhong Chen; Carolyn Francek; Tao Wu; Advait Nagle; S. Whitney Barnes; David Plouffe; Marcus C. S. Lee; David A. Fidock; Wouter Graumans; Marga van de Vegte-Bolmer; Geert Jan van Gemert; Grennady Wirjanata; Boni F. Sebayang; Jutta Marfurt; Bruce Russell; Rossarin Suwanarusk; Ric N. Price; François Nosten; Anchalee Tungtaeng; Montip Gettayacamin; Jetsumon Sattabongkot; Jennifer Taylor; John R. Walker; David C. Tully

ABSTRACT Renewed global efforts toward malaria eradication have highlighted the need for novel antimalarial agents with activity against multiple stages of the parasite life cycle. We have previously reported the discovery of a novel class of antimalarial compounds in the imidazolopiperazine series that have activity in the prevention and treatment of blood stage infection in a mouse model of malaria. Consistent with the previously reported activity profile of this series, the clinical candidate KAF156 shows blood schizonticidal activity with 50% inhibitory concentrations of 6 to 17.4 nM against P. falciparum drug-sensitive and drug-resistant strains, as well as potent therapeutic activity in a mouse models of malaria with 50, 90, and 99% effective doses of 0.6, 0.9, and 1.4 mg/kg, respectively. When administered prophylactically in a sporozoite challenge mouse model, KAF156 is completely protective as a single oral dose of 10 mg/kg. Finally, KAF156 displays potent Plasmodium transmission blocking activities both in vitro and in vivo. Collectively, our data suggest that KAF156, currently under evaluation in clinical trials, has the potential to treat, prevent, and block the transmission of malaria.


The Journal of Infectious Diseases | 2013

NF135.C10: a new Plasmodium falciparum clone for controlled human malaria infections

Anne C. Teirlinck; Meta Roestenberg; Marga van de Vegte-Bolmer; Anja Scholzen; Moniek J. L. Heinrichs; Rianne Siebelink-Stoter; Wouter Graumans; Geert-Jan van Gemert; Karina Teelen; Martijn W. Vos; Krystelle Nganou-Makamdop; Steffen Borrmann; Yolanda P. A. Rozier; Marianne A. A. Erkens; Adrian J. F. Luty; Cornelus C. Hermsen; B. Kim Lee Sim; Lisette van Lieshout; Stephen L. Hoffman; Leo G. Visser; Robert W. Sauerwein

We established a new field clone of Plasmodium falciparum for use in controlled human malaria infections and vaccine studies to complement the current small portfolio of P. falciparum strains, primarily based on NF54. The Cambodian clone NF135.C10 consistently produced gametocytes and generated substantial numbers of sporozoites in Anopheles mosquitoes and diverged from NF54 parasites by genetic markers. In a controlled human malaria infection trial, 3 of 5 volunteers challenged by mosquitoes infected with NF135.C10 and 4 of 5 challenged with NF54 developed parasitemia as detected with microscopy. The 2 strains induced similar clinical signs and symptoms as well as cellular immunological responses. Clinical Trials Registration NCT01002833.


Scientific Reports | 2013

The relevance and applicability of oocyst prevalence as a read-out for mosquito feeding assays

Will Stone; Maarten Eldering; Geert-Jan van Gemert; Kjerstin Lanke; Lynn Grignard; Marga van de Vegte-Bolmer; Rianne Siebelink-Stoter; Wouter Graumans; Will Roeffen; Chris Drakeley; Robert W. Sauerwein; Teun Bousema

Mosquito feeding assays are important in evaluations of malaria transmission-reducing interventions. The proportion of mosquitoes with midgut oocysts is commonly used as an outcome measure, but in natural low intensity infections the effect of oocyst non-rupture on mosquito infectivity is unclear. By identifying ruptured as well as intact oocysts, we show that in low intensity P. falciparum infections i) 66.7–96.7% of infected mosquitoes experienced oocyst rupture between 11–21 days post-infection, ii) oocyst rupture led invariably to sporozoite release, iii) oocyst rupture led to salivary gland infections in 97.8% of mosquitoes, and iv) 1250 (IQR 313-2400) salivary gland sporozoites were found per ruptured oocyst. These data show that infectivity can be predicted with reasonable certainty from oocyst prevalence in low intensity infections. High throughput methods for detecting infection in whole mosquitoes showed that 18s PCR but not circumsporozoite ELISA gave a reliable approximation of mosquito infection rates on day 7 post-infection.


The Journal of Infectious Diseases | 2014

A Scalable Assessment of Plasmodium falciparum Transmission in the Standard Membrane-Feeding Assay, Using Transgenic Parasites Expressing Green Fluorescent Protein–Luciferase

Will Stone; Thomas S. Churcher; Wouter Graumans; G.J.A. van Gemert; Martijn W. Vos; Kjerstin Lanke; M.G. van de Vegte-Bolmer; Rianne Siebelink-Stoter; Koen J. Dechering; Ashley M. Vaughan; Nelly Camargo; Stefan H. I. Kappe; Robert W. Sauerwein; Teun Bousema

BACKGROUND The development of drugs and vaccines to reduce malaria transmission is an important part of eradication plans. The transmission-reducing activity (TRA) of these agents is currently determined in the standard membrane-feeding assay (SMFA), based on subjective microscopy-based readouts and with limitations in upscaling and throughput. METHODS Using a Plasmodium falciparum strain expressing the firefly luciferase protein, we present a luminescence-based approach to SMFA evaluation that eliminates the requirement for mosquito dissections in favor of a simple approach in which whole mosquitoes are homogenized and examined directly for luciferase activity. RESULTS Analysis of 6860 Anopheles stephensi mosquitoes across 68 experimental feeds shows that the luminescence assay was as sensitive as microscopy for infection detection. The mean luminescence intensity of individual and pooled mosquitoes accurately quantifies mean oocyst intensity and generates comparable TRA estimates. The luminescence assay presented here could increase SMFA throughput so that 10-30 experimental feeds could be evaluated in a single 96-well plate. CONCLUSIONS This new method of assessing Plasmodium infection and transmission intensity could expedite the screening of novel drug compounds, vaccine candidates, and sera from malaria-exposed individuals for TRA. Luminescence-based estimates of oocyst intensity in individual mosquitoes should be interpreted with caution.


PLOS ONE | 2015

Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites

Remko Schats; Else M. Bijker; Geert-Jan van Gemert; Wouter Graumans; Marga van de Vegte-Bolmer; Lisette van Lieshout; Mariëlle C. Haks; Cornelus C. Hermsen; Anja Scholzen; Leo G. Visser; Robert W. Sauerwein

Background Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI) model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization), requiring only 30–45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains. Methods In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa) in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia) at 14 months after the last immunization (NCT01660854). Results Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0–15.5) versus 8.5 days in 5 malaria-naïve controls (p = 0.0005). Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10. Conclusion This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines. Trial Registration Clinicaltrials.gov NCT01660854


PLOS ONE | 2014

Sporozoite Immunization of Human Volunteers under Mefloquine Prophylaxis Is Safe, Immunogenic and Protective: A Double-Blind Randomized Controlled Clinical Trial

Else M. Bijker; Remko Schats; Joshua M. Obiero; Marije C. Behet; Geert-Jan van Gemert; Marga van de Vegte-Bolmer; Wouter Graumans; Lisette van Lieshout; Guido J. H. Bastiaens; Karina Teelen; Cornelus C. Hermsen; Anja Scholzen; Leo G. Visser; Robert W. Sauerwein

Immunization of healthy volunteers with chloroquine ChemoProphylaxis and Sporozoites (CPS-CQ) efficiently and reproducibly induces dose-dependent and long-lasting protection against homologous Plasmodium falciparum challenge. Here, we studied whether chloroquine can be replaced by mefloquine, which is the only other licensed anti-malarial chemoprophylactic drug that does not affect pre-erythrocytic stages, exposure to which is considered essential for induction of protection by CPS immunization. In a double blind randomized controlled clinical trial, volunteers under either chloroquine prophylaxis (CPS-CQ, n = 5) or mefloquine prophylaxis (CPS-MQ, n = 10) received three sub-optimal CPS immunizations by bites from eight P. falciparum infected mosquitoes each, at monthly intervals. Four control volunteers received mefloquine prophylaxis and bites from uninfected mosquitoes. CPS-MQ immunization is safe and equally potent compared to CPS-CQ inducing protection in 7/10 (70%) versus 3/5 (60%) volunteers, respectively. Furthermore, specific antibody levels and cellular immune memory responses were comparable between both groups. We therefore conclude that mefloquine and chloroquine are equally effective in CPS-induced immune responses and protection. Trial Registration ClinicalTrials.gov NCT01422954


Scientific Reports | 2016

Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes

Maarten Eldering; Isabelle Morlais; Geert-Jan van Gemert; Marga van de Vegte-Bolmer; Wouter Graumans; Rianne Siebelink-Stoter; Martijn W. Vos; Luc Abate; Will Roeffen; Teun Bousema; Elena A. Levashina; Robert W. Sauerwein

Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3–5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites.


The Journal of Infectious Diseases | 2017

A Molecular Assay to Quantify Male and Female Plasmodium falciparum Gametocytes: Results From 2 Randomized Controlled Trials Using Primaquine for Gametocyte Clearance

Will Stone; Patrick Sawa; Kjerstin Lanke; Sanna R. Rijpma; Robin Oriango; Maureen Nyaurah; Paul Osodo; Victor Osoti; Almahamoudou Mahamar; Halimatou Diawara; Rob Woestenenk; Wouter Graumans; Marga van de Vegte-Bolmer; John S. Bradley; Ingrid Chen; Joelle Brown; Giulia Siciliano; Pietro Alano; Roly Gosling; Alassane Dicko; Chris Drakeley; Teun Bousema

Summary A sensitive molecular assay was developed to quantify male and female Plasmodium falciparum gametocytes. Its application in 2 clinical trials demonstrates that the early effects of primaquine may be due to gametocyte fitness rather than sex ratio.

Collaboration


Dive into the Wouter Graumans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kjerstin Lanke

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Teun Bousema

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Will Stone

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Anja Scholzen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Karina Teelen

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge