Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geert Mortier is active.

Publication


Featured researches published by Geert Mortier.


Genome Biology | 2007

qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data.

Jan Hellemans; Geert Mortier; Anne De Paepe; Franki Speleman; Jo Vandesompele

Although quantitative PCR (qPCR) is becoming the method of choice for expression profiling of selected genes, accurate and straightforward processing of the raw measurements remains a major hurdle. Here we outline advanced and universally applicable models for relative quantification and inter-run calibration with proper error propagation along the entire calculation track. These models and algorithms are implemented in qBase, a free program for the management and automated analysis of qPCR data.


American Journal of Medical Genetics Part A | 2007

Nosology and classification of genetic skeletal disorders: 2010 revision

Matthew L. Warman; Valérie Cormier-Daire; Christine M. Hall; Deborah Krakow; Ralph S. Lachman; Martine Lemerrer; Geert Mortier; Stefan Mundlos; Gen Nishimura; David L. Rimoin; Stephen P. Robertson; Ravi Savarirayan; David Sillence; Juergen Spranger; Sheila Unger; Bernhard Zabel; Andrea Superti-Furga

The objective of the paper is to provide the revision of the Nosology of Constitutional Disorders of Bone that incorporates newly recognized disorders and reflects new molecular and pathogenetic concepts. Criteria for inclusion of disorders were (1) significant skeletal involvement corresponding to the definition of skeletal dysplasias, metabolic bone disorders, dysostoses, and skeletal malformation and/or reduction syndromes, (2) publication and/or MIM listing, (3) genetic basis proven or very likely, and (4) nosologic autonomy confirmed by molecular or linkage analysis and/or distinctive diagnostic features and observation in multiple individuals or families. Three hundred seventy‐two different conditions were included and placed in 37 groups defined by molecular, biochemical and/or radiographic criteria. Of these conditions, 215 were associated with one or more of 140 different genes. Nosologic status was classified as final (mutations or locus identified), probable (pedigree evidence), or bona fide (multiple observations and clear diagnostic criteria, but no pedigree or locus evidence yet). The number of recognized genetic disorders with a significant skeletal component is growing and the distinction between dysplasias, metabolic bone disorders, dysostoses, and malformation syndromes is blurring. For classification purposes, pathogenetic and molecular criteria are integrating with morphological ones but disorders are still identified by clinical features and radiographic appearance. Molecular evidence leads to confirmation of individual entities and to the constitution of new groups, but also allows for delineation of related but distinct entities and indicates a previously unexpected heterogeneity of molecular mechanisms; thus, molecular evidence does not necessarily simplify the Nosology, and a further increase in the number of entities and growing complexity is expected. By providing an updated overview of recognized entities with skeletal involvement and of the underlying gene defects, the new Nosology can provide practical diagnostic help, facilitate the recognition of new entities, and foster and direct research in skeletal biology and genetic disorders.


The New England Journal of Medicine | 2008

Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes

Mefford Hc; Andrew J. Sharp; Carl Baker; Andy Itsara; Zhaoshi Jiang; Karen Buysse; Shuwen Huang; Viv Maloney; John A. Crolla; Diana Baralle; Amanda L. Collins; Catherine L. Mercer; Koenraad K. Norga; Thomy de Ravel; Koenraad Devriendt; Ernie M.H.F. Bongers; Nicole de Leeuw; William Reardon; Stefania Gimelli; Frédérique Béna; Raoul C. M. Hennekam; Alison Male; Lorraine Gaunt; Jill Clayton-Smith; Ingrid Simonic; Soo Mi Park; Sarju G. Mehta; Serena Nik-Zainal; C. Geoffrey Woods; Helen V. Firth

BACKGROUND Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients. METHODS We tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons. RESULTS We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P=1.1x10(-7)). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in nine children with mental retardation or autism spectrum disorder and other variable features (P=0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies. CONCLUSIONS We have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype.


Journal of Medical Genetics | 2006

Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports

B Menten; Nicole Maas; Bernard Thienpont; Karen Buysse; J Vandesompele; C Melotte; T. de Ravel; S. Van Vooren; Irina Balikova; Liesbeth Backx; Sophie Janssens; A. De Paepe; B. De Moor; Yves Moreau; Peter Marynen; Fryns Jp; Geert Mortier; Koenraad Devriendt; F. Speleman; J.R. Vermeesch

Background: Chromosomal abnormalities are a major cause of mental retardation and multiple congenital anomalies (MCA/MR). Screening for these chromosomal imbalances has mainly been done by standard karyotyping. Previous array CGH studies on selected patients with chromosomal phenotypes and normal karyotypes suggested an incidence of 10–15% of previously unnoticed de novo chromosomal imbalances. Objective: To report array CGH screening of a series of 140 patients (the largest published so far) with idiopathic MCA/MR but normal karyotype. Results: Submicroscopic chromosomal imbalances were detected in 28 of the 140 patients (20%) and included 18 deletions, seven duplications, and three unbalanced translocations. Seventeen of 24 imbalances were confirmed de novo and 19 were assumed to be causal. Excluding subtelomeric imbalances, our study identified 11 clinically relevant interstitial submicroscopic imbalances (8%). Taking this and previously reported studies into consideration, array CGH screening with a resolution of at least 1 Mb has been undertaken on 432 patients with MCA/MR. Most imbalances are non-recurrent and spread across the genome. In at least 8.8% of these patients (38 of 432) de novo intrachromosomal alterations have been identified. Conclusions: Array CGH should be considered an essential aspect of the genetic analysis of patients with MCA/MR. In addition, in the present study three patients were mosaic for a structural chromosome rearrangement. One of these patients had monosomy 7 in as few as 8% of the cells, showing that array CGH allows detection of low grade mosaicisims.


Human Mutation | 2000

Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects

Ludwine Messiaen; Tom Callens; Geert Mortier; Diane Beysen; Ina Vandenbroucke; Nadine Van Roy; Frank Speleman; Anne De Paepe

Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders and is caused by mutations in the NF1 gene. Mutation detection is complex due to the large size of the NF1 gene, the presence of pseudogenes and the great variety of possible lesions. Although there is no evidence for locus heterogeneity in NF1, mutation detection rates rarely exceed 50%. We studied 67 unrelated NF1 patients fulfilling the NIH diagnostic criteria, 29 familial and 38 sporadic cases, using a cascade of complementary techniques. We performed a protein truncation test starting from puromycin‐treated EBV cell lines and, if no mutation was found, continued with heteroduplex, FISH, Southern blot and cytogenetic analysis. We identified the germline mutation in 64 of 67 patients and 32 of the mutations are novel. This is the highest mutation detection rate reported in a study of typical NF1 patients. All mutations were studied at the genomic and RNA level. The mutational spectrum consisted of 25 nonsense, 12 frameshift, 19 splice mutations, six missense and/or small in‐frame deletions, one deletion of the entire NF1 gene, and a translocation t(14;17)(q32;q11.2). Our data suggest that exons 10a‐10c and 37 are mutation‐rich regions and that together with some recurrent mutations they may account for almost 30% of the mutations in classical NF1 patients. We found a high frequency of unusual splice mutations outside of the AG/GT 5¢ and 3¢ splice sites. As some of these mutations form stable transcripts, it remains possible that a truncated neurofibromin is formed. Hum Mutat 15:541–555, 2000.


Nature Genetics | 2004

Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis

Jan Hellemans; Olena Preobrazhenska; Andy Willaert; Philippe Debeer; Peter Verdonk; Teresa Costa; Katrien Janssens; Björn Menten; Nadine Van Roy; Stefan Vermeulen; Ravi Savarirayan; Wim Van Hul; Filip Vanhoenacker; Danny Huylebroeck; Anne De Paepe; Jean-Marie Naeyaert; Jo Vandesompele; Frank Speleman; Kristin Verschueren; Paul Coucke; Geert Mortier

Osteopoikilosis, Buschke-Ollendorff syndrome (BOS) and melorheostosis are disorders characterized by increased bone density. The occurrence of one or more of these phenotypes in the same individual or family suggests that these entities might be allelic. We collected data from three families in which affected individuals had osteopoikilosis with or without manifestations of BOS or melorheostosis. A genome-wide linkage analysis in these families, followed by the identification of a microdeletion in an unrelated individual with these diseases, allowed us to map the gene that is mutated in osteopoikilosis. All the affected individuals that we investigated were heterozygous with respect to a loss-of-function mutation in LEMD3 (also called MAN1), which encodes an inner nuclear membrane protein. A somatic mutation in the second allele of LEMD3 could not be identified in fibroblasts from affected skin of an individual with BOS and an individual with melorheostosis. XMAN1, the Xenopus laevis ortholog, antagonizes BMP signaling during embryogenesis. In this study, LEMD3 interacted with BMP and activin-TGFβ receptor–activated Smads and antagonized both signaling pathways in human cells.


Nature | 2012

HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle.

Matthew A. Deardorff; Masashige Bando; Ryuichiro Nakato; Erwan Watrin; Takehiko Itoh; Masashi Minamino; Katsuya Saitoh; Makiko Komata; Yuki Katou; Dinah Clark; Kathryn E. Cole; Elfride De Baere; Christophe Decroos; Nataliya Di Donato; Sarah Ernst; Lauren J. Francey; Yolanda Gyftodimou; Kyotaro Hirashima; Melanie Hullings; Yuuichi Ishikawa; Christian Jaulin; Maninder Kaur; Tohru Kiyono; Patrick M. Lombardi; Laura Magnaghi-Jaulin; Geert Mortier; Naohito Nozaki; Michael B. Petersen; Hiroyuki Seimiya; Victoria M. Siu

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (∼5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the ‘used’ cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Journal of Medical Genetics | 1998

The annual incidence of DiGeorge/velocardiofacial syndrome.

Koenraad Devriendt; Jean-Pierre Fryns; Geert Mortier; Mn Van Thienen; Kathelijn Keymolen

1 Boughman JA, Conneally PM, Nance WE. Population genetic studies of retinitis pigmentosa. AmJHum Genet 1980;32:223-35. 2 Inglehearn CF. Molecular genetics of inherited retinal dystrophies. Eye 1998;12:571-9. N 3 Sung CH, Davenport CM, Hennessey JC, et al. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA 199 1;88:6481-5. 4 Inglehearn CF, Tarttelin EE, Plant C, et al. A genetic survey oftwenty dominant retinitis pigs mentosa families: frequencies of the eight known loci and evidence for further heterogeneity.J Med Genet 1998;35:1-5. 5 Souied EH, Rozet JM, Gerber S, et al. Screening for mutations within the rhodopsin, peripherin-RDS and ROMI genes in auto-


Nature Genetics | 2012

Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm

Mark E. Lindsay; Dorien Schepers; Nikhita Ajit Bolar; Jefferson J. Doyle; Elena M. Gallo; Justyna Fert-Bober; Marlies Kempers; Elliot K. Fishman; Yichun Chen; Loretha Myers; Djahita Bjeda; Gretchen Oswald; Abdallah F. Elias; Howard P. Levy; Britt Marie Anderlid; Margaret Yang; Ernie M.H.F. Bongers; Janneke Timmermans; Alan C. Braverman; Natalie Canham; Geert Mortier; Han G. Brunner; Peter H. Byers; Jennifer E. Van Eyk; Lut Van Laer; Harry C. Dietz; Bart Loeys

Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2+/− mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-β signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1C1039G/+) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β–mediated vasculopathies.


Journal of Medical Genetics | 2009

Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome

B.W.M. van Bon; Mefford Hc; Björn Menten; David A. Koolen; Andrew J. Sharp; Willy M. Nillesen; Jeffrey W. Innis; T. de Ravel; Catherine Mercer; Marco Fichera; Helen Stewart; L E Connell; Katrin Õunap; Katherine Lachlan; B Castle; N. Van der Aa; C.M.A. van Ravenswaaij; Marcelo A. Nobrega; C Serra-Juhé; Ingrid Simonic; N. de Leeuw; Rolph Pfundt; Ernie M.H.F. Bongers; Carl Baker; P Finnemore; S Huang; Viv Maloney; John A. Crolla; M van Kalmthout; Maurizio Elia

Background: Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. Methods: To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3–BP4–BP5 region were included in this study to ascertain the clinical significance of duplications in this region. Results: The 15q13.3 microdeletion in our series was associated with a highly variable intra- and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3–BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3–BP4–BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. Conclusions: Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnostic difficulties and challenge the commonly used paradigm in the diagnostic setting that aberrations inherited from a phenotypically normal parent are usually without clinical consequences.

Collaboration


Dive into the Geert Mortier's collaboration.

Top Co-Authors

Avatar

Björn Menten

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Anne De Paepe

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Koenraad Devriendt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Buysse

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Sandra Janssens

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valérie Cormier-Daire

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Van Borsel

Ghent University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge