Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Buysse is active.

Publication


Featured researches published by Karen Buysse.


The New England Journal of Medicine | 2008

Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes

Mefford Hc; Andrew J. Sharp; Carl Baker; Andy Itsara; Zhaoshi Jiang; Karen Buysse; Shuwen Huang; Viv Maloney; John A. Crolla; Diana Baralle; Amanda L. Collins; Catherine L. Mercer; Koenraad K. Norga; Thomy de Ravel; Koenraad Devriendt; Ernie M.H.F. Bongers; Nicole de Leeuw; William Reardon; Stefania Gimelli; Frédérique Béna; Raoul C. M. Hennekam; Alison Male; Lorraine Gaunt; Jill Clayton-Smith; Ingrid Simonic; Soo Mi Park; Sarju G. Mehta; Serena Nik-Zainal; C. Geoffrey Woods; Helen V. Firth

BACKGROUND Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients. METHODS We tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons. RESULTS We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P=1.1x10(-7)). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in nine children with mental retardation or autism spectrum disorder and other variable features (P=0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies. CONCLUSIONS We have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype.


Journal of Medical Genetics | 2006

Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports

B Menten; Nicole Maas; Bernard Thienpont; Karen Buysse; J Vandesompele; C Melotte; T. de Ravel; S. Van Vooren; Irina Balikova; Liesbeth Backx; Sophie Janssens; A. De Paepe; B. De Moor; Yves Moreau; Peter Marynen; Fryns Jp; Geert Mortier; Koenraad Devriendt; F. Speleman; J.R. Vermeesch

Background: Chromosomal abnormalities are a major cause of mental retardation and multiple congenital anomalies (MCA/MR). Screening for these chromosomal imbalances has mainly been done by standard karyotyping. Previous array CGH studies on selected patients with chromosomal phenotypes and normal karyotypes suggested an incidence of 10–15% of previously unnoticed de novo chromosomal imbalances. Objective: To report array CGH screening of a series of 140 patients (the largest published so far) with idiopathic MCA/MR but normal karyotype. Results: Submicroscopic chromosomal imbalances were detected in 28 of the 140 patients (20%) and included 18 deletions, seven duplications, and three unbalanced translocations. Seventeen of 24 imbalances were confirmed de novo and 19 were assumed to be causal. Excluding subtelomeric imbalances, our study identified 11 clinically relevant interstitial submicroscopic imbalances (8%). Taking this and previously reported studies into consideration, array CGH screening with a resolution of at least 1 Mb has been undertaken on 432 patients with MCA/MR. Most imbalances are non-recurrent and spread across the genome. In at least 8.8% of these patients (38 of 432) de novo intrachromosomal alterations have been identified. Conclusions: Array CGH should be considered an essential aspect of the genetic analysis of patients with MCA/MR. In addition, in the present study three patients were mosaic for a structural chromosome rearrangement. One of these patients had monosomy 7 in as few as 8% of the cells, showing that array CGH allows detection of low grade mosaicisims.


PLOS Genetics | 2010

Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies

Mefford Hc; Hiltrud Muhle; Philipp Ostertag; Sarah von Spiczak; Karen Buysse; Carl Baker; Andre Franke; Alain Malafosse; Pierre Genton; Pierre Thomas; Christina A. Gurnett; Stefan Schreiber; Alexander G. Bassuk; Michel Guipponi; Ulrich Stephani; Ingo Helbig; Evan E. Eichler

Epilepsy is one of the most common neurological disorders in humans with a prevalence of 1% and a lifetime incidence of 3%. Several genes have been identified in rare autosomal dominant and severe sporadic forms of epilepsy, but the genetic cause is unknown in the vast majority of cases. Copy number variants (CNVs) are known to play an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID), autism, and schizophrenia. Genome-wide studies of copy number variation in epilepsy have not been performed. We have applied whole-genome oligonucleotide array comparative genomic hybridization to a cohort of 517 individuals with various idiopathic, non-lesional epilepsies. We detected one or more rare genic CNVs in 8.9% of affected individuals that are not present in 2,493 controls; five individuals had two rare CNVs. We identified CNVs in genes previously implicated in other neurodevelopmental disorders, including two deletions in AUTS2 and one deletion in CNTNAP2. Therefore, our findings indicate that rare CNVs are likely to contribute to a broad range of generalized and focal epilepsies. In addition, we find that 2.9% of patients carry deletions at 15q11.2, 15q13.3, or 16p13.11, genomic hotspots previously associated with ID, autism, or schizophrenia. In summary, our findings suggest common etiological factors for seemingly diverse diseases such as ID, autism, schizophrenia, and epilepsy.


Human Molecular Genetics | 2013

Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker–Warburg syndrome

Karen Buysse; Moniek Riemersma; Gareth T. Powell; Jeroen van Reeuwijk; David Chitayat; Tony Roscioli; Erik-Jan Kamsteeg; Christa van den Elzen; Ellen van Beusekom; Susan Blaser; Riyana Babul-Hirji; William Halliday; Gavin J. Wright; Derek L. Stemple; Yung-Yao Lin; Dirk J. Lefeber; Hans van Bokhoven

Several known or putative glycosyltransferases are required for the synthesis of laminin-binding glycans on alpha-dystroglycan (αDG), including POMT1, POMT2, POMGnT1, LARGE, Fukutin, FKRP, ISPD and GTDC2. Mutations in these glycosyltransferase genes result in defective αDG glycosylation and reduced ligand binding by αDG causing a clinically heterogeneous group of congenital muscular dystrophies, commonly referred to as dystroglycanopathies. The most severe clinical form, Walker–Warburg syndrome (WWS), is characterized by congenital muscular dystrophy and severe neurological and ophthalmological defects. Here, we report two homozygous missense mutations in the β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) gene in a family affected with WWS. Functional studies confirmed the pathogenicity of the mutations. First, expression of wild-type but not mutant B3GNT1 in human prostate cancer (PC3) cells led to increased levels of αDG glycosylation. Second, morpholino knockdown of the zebrafish b3gnt1 orthologue caused characteristic muscular defects and reduced αDG glycosylation. These functional studies identify an important role of B3GNT1 in the synthesis of the uncharacterized laminin-binding glycan of αDG and implicate B3GNT1 as a novel causative gene for WWS.


BMC Bioinformatics | 2005

arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays.

Björn Menten; Filip Pattyn; Katleen De Preter; Piet Robbrecht; Evi Michels; Karen Buysse; Geert Mortier; Anne De Paepe; Steven Van Vooren; Joris Vermeesch; Yves Moreau; Bart De Moor; Stefan Vermeulen; Frank Speleman; Jo Vandesompele

BackgroundThe availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment.ResultsWe have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser.ConclusionArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at http://medgen.ugent.be/arrayCGHbase/.


PLOS Genetics | 2009

Disease-Causing 7.4 kb Cis-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the FOXL2 Promotor: Implications for Mutation Screening

Barbara D'haene; Catia Attanasio; Diane Beysen; Josée Dostie; Edmond G. Lemire; Philippe Bouchard; Michael Field; Kristie Jones; Birgit Lorenz; Björn Menten; Karen Buysse; Filip Pattyn; Marc Friedli; Catherine Ucla; Colette Rossier; Carine Wyss; Frank Speleman; Anne De Paepe; Job Dekker; Elfride De Baere

To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5′ to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular.


European Journal of Medical Genetics | 2009

Challenges for CNV interpretation in clinical molecular karyotyping: Lessons learned from a 1001 sample experience

Karen Buysse; Barbara Delle Chiaie; Rudy Van Coster; Bart Loeys; Anne De Paepe; Geert Mortier; Franki Speleman; Björn Menten

Molecular karyotyping has moved from bench to bedside for the genetic screening of patients with mental retardation and/or congenital anomalies. The commercial availability of high-resolution microarray platforms has significantly facilitated this process. However, the notion that copy number variants are also abundantly present in the general population challenges the interpretation of the clinical significance of detected copy number variants (CNVs) in these patients. Moreover, the awareness of incomplete penetrance and variable expression, exemplified by the inheritance of causal CNVs from apparently unaffected parents, has further blurred the boundary between benign and pathogenic variation. We analyzed 1001 patients using a large insert clone array (298 patients) and an oligonucleotide-based (703 patients) platform. In this cohort we encountered several examples of causal imbalances that could have been easily interpreted as benign variants when relying on established paradigms. Based on our experience and the pitfalls we encountered, we suggest a decision tree that can be used as a guideline in clinical diagnostics. Using this workflow, we detected 106 clinically significant CNVs in 100 patients, giving a diagnostic yield of at least 10%. Of these imbalances, 58 occurred de novo, 22 were inherited and 26 of unknown inheritance. This underscores that inherited CNVs should not be automatically disregarded as benign variants. Among the clinically relevant CNVs were 11 single-gene aberrations, highlighting the power of high-resolution molecular karyotyping to identify causal genes.


Journal of Medical Genetics | 2007

Osteopoikilosis, short stature and mental retardation as key features of a new microdeletion syndrome on 12q14

Björn Menten; Karen Buysse; Farah R. Zahir; Jan Hellemans; Sara Jane Hamilton; Teresa Costa; Carrie Fagerstrom; George Anadiotis; Daniel J. Kingsbury; Barbara McGillivray; Marco A. Marra; Jan M. Friedman; Frank Speleman; Geert Mortier

This report presents the detection of a heterozygous deletion at chromosome 12q14 in three unrelated patients with a similar phenotype consisting of mild mental retardation, failure to thrive in infancy, proportionate short stature and osteopoikilosis as the most characteristic features. In each case, this interstitial deletion was found using molecular karyotyping. The deletion occurred as a de novo event and varied between 3.44 and 6 megabases (Mb) in size with a 3.44 Mb common deleted region. The deleted interval was not flanked by low-copy repeats or segmental duplications. It contains 13 RefSeq genes, including LEMD3, which was previously shown to be the causal gene for osteopoikilosis. The observation of osteopoikilosis lesions should facilitate recognition of this new microdeletion syndrome among children with failure to thrive, short stature and learning disabilities.


BMC Medical Genetics | 2009

Array comparative genomic hybridization and flow cytometry analysis of spontaneous abortions and mors in utero samples

Björn Menten; Katrien Swerts; Barbara Delle Chiaie; Sandra Janssens; Karen Buysse; Jan Philippé; Franki Speleman

BackgroundIt is estimated that 10-15% of all clinically recognised pregnancies result in a spontaneous abortion or miscarriage. Previous studies have indicated that in up to 50% of first trimester miscarriages, chromosomal abnormalities can be identified. For several decades chromosome analysis has been the golden standard to detect these genomic imbalances. A major drawback of this method is the requirement of short term cultures of fetal cells. In this study we evaluated the combined use of array CGH and flow cytometry (FCM), for detection of chromosomal abnormalities, as an alternative for karyotyping.MethodsIn total 100 spontaneous abortions and mors in utero samples were investigated by karyotyping and array CGH in combination with FCM in order to compare the results for both methods.ResultsChromosome analysis revealed 17 abnormal karyotypes whereas array CGH in combination with FCM identified 26 aberrations due to the increased test success rate. Karyotyping was unsuccessful in 28% of cases as compared to only two out of hundred samples with inconclusive results for combined array CGH and FCM analysis.ConclusionThis study convincingly shows that array CGH analysis for detection of numerical and segmental imbalances in combination with flow cytometry for detection of ploidy status has a significant higher detection rate for chromosomal abnormalities as compared to karyotyping of miscarriages samples.


European Journal of Medical Genetics | 2009

The 12q14 microdeletion syndrome: Additional patients and further evidence that HMGA2 is an important genetic determinant for human height

Karen Buysse; William Reardon; Lakshmi Mehta; Teresa Costa; Carrie Fagerstrom; Daniel J. Kingsbury; George Anadiotis; Barbara McGillivray; Jan Hellemans; Nicole de Leeuw; Bert B.A. de Vries; Frank Speleman; Björn Menten; Geert Mortier

Characteristic features of the 12q14 microdeletion syndrome include low birth weight, failure to thrive, short stature, learning disabilities and Buschke-Ollendorff lesions in bone and skin. This report on two additional patients with this microdeletion syndrome emphasizes the rather constant and uniform phenotype encountered in this disorder and refines the critical region to a 2.61 Mb interval on 12q14.3, encompassing 10 RefSeq genes. We have previously shown that LEMD3 haploinsufficiency is responsible for the Buschke-Ollendorff lesions and now provide strong evidence that a heterozygous deletion of HMGA2 is causing the growth failure observed in this disorder. The identification of an intragenic HMGA2 deletion in a boy with proportionate short stature and the cosegregation of this deletion with reduced adult height in the extended family of the boy further underscore the role of HMGA2 in regulating human linear growth.

Collaboration


Dive into the Karen Buysse's collaboration.

Top Co-Authors

Avatar

Björn Menten

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne De Paepe

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Filip Pattyn

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Bart De Moor

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Irina Balikova

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

J.R. Vermeesch

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge