Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geert Verreck is active.

Publication


Featured researches published by Geert Verreck.


Thermochimica Acta | 2001

Investigation of thermal properties of glassy itraconazole: identification of a monotropic mesophase

K. Six; Geert Verreck; Jef Peeters; Koen Binnemans; Hugo Berghmans; Patrick Augustijns; Renaat Kinget; Guy Van den Mooter

Abstract The purpose of the present work is the elucidation of two endothermic transitions at 74 and 90°C, respectively, observed during differential scanning calorimetry of glassy itraconazole. Modulated temperature DSC (MTDSC), hot-stage microscopy (HSM), HPLC and high temperature X-ray diffraction (HT-X ray) were used to examine the thermal properties of glassy itraconazole. It was found that the preparation mode of the glass does not seem to influence the appearance of both endothermic transitions since they were present during heating of glassy itraconazole which was prepared by cooling the melt or by rapid solvent evaporation of an itraconazole solution. These observations suggest that the appearance of the two endothermic transitions require the liquid state prior to glass formation. The transitions are not due to impurities in the starting material, nor are they caused by thermal decomposition. This was further confirmed by HPLC-analysis. HSM showed structure formation following cooling of the melt, at approximately 87°C; cooling the product further showed a second change in optical contrast. HT-X ray confirmed and identified the formation of a nematic mesophase. The appearance of the two endothermic signals during scanning of glassy itraconazole points to the formation of a mesophase. Due to the nature of itraconazole, it appears as a chiral nematic phase of which the mobility is frozen into a glass upon cooling below 59°C thereby impeding further crystallization.


Drug Development and Industrial Pharmacy | 2003

Itraconazole Formulation Studies of the Melt-Extrusion Process with Mixture Design

B. Rambali; Geert Verreck; Lieven Baert; D.L. Massart

Abstract Itraconazole is a poorly water soluble compound. One method to increase the aqueous solubility of itraconazole is through formation of a solid dispersion. The purpose of this study is to develop a 40% w/w itraconazole formulation through solid dispersion formation, using hydroxypropyl-β-cyclodextrin (HP-β-CD) and hydroxypropylmethylcellulose (HPMC) as mixture components. The solid dispersion was obtained by melt-extrusion using a twin-screw corotating melt extruder. A D-optimal mixture design was applied for the development of the optimal itraconazole formulation. The itraconazole fraction varied between 20% w/w and 50% w/w in the mixture design and the HPMC and HP-β-CD fractions varied between 10% w/w and 60% w/w. The itraconazole formulation was optimized by producing clear extrudates, minimizing the torque, and maximizing the glass transition temperature and the apparent itraconazole solubility in 0.1 N HCl. Regression models were developed for the torque, glass transition temperature, and apparent solubility of itraconazole. High itraconazole fraction in the mixture promoted a better melt processing (minimizes torque). High HPMC fraction (>33% w/w) resulted in clear extrudates, indicating a solid dispersion and resulted in high glass transition temperature of the melt. High HP-β-CD fraction resulted in increased apparent itraconazole solubility in 0.1 N HCl. The optimal itraconazole formulation consisted of 45% w/w HPMC and 15% HP-β-CD w/w.


International Journal of Pharmaceutics | 2001

Characterization of glassy itraconazole: a comparative study of its molecular mobility below Tg with that of structural analogues using MTDSC

K. Six; Geert Verreck; Jozef Peeters; Patrick Augustijns; Renaat Kinget; G. Van den Mooter

The objective of the present study was to estimate the molecular mobility of glassy itraconazole below the glass transition, in comparison with structural analogues (i.e. miconazole and ketoconazole).Glassy itraconazole and miconazole were prepared by cooling from the melt. The glassy state of the drug was investigated with modulated temperature DSC using the following conditions: amplitude +/-0.212 K, period 40 s, underlying heating rate 2 K/min. The glass transition was determined from the reversing heat flow and occurred at 332.4 (+/-0.5) K and 274.8 (+/-0.4) K for itraconazole and miconazole, respectively. The jump in heat capacity at the glass transition was 303.42 (+/-3.43) J/mol K for itraconazole and 179.35 (+/-0.89) J/mol K for miconazole. The influence of the experimental conditions on the position of the glass transition of itraconazole was investigated by varying the amplitude from +/-0.133 to +/-0.292 K and the period from 25 to 55 s, while the underlying heating rate was kept constant at 2 K/min. Glass transition temperature, T(g), was not significantly influenced by the frequency of the modulation nor by the cooling rate. However, the relaxation enthalpy at the glass transition increased with decreasing cooling rate indicating relaxation during the glass formation process. To estimate the molecular mobility of the glassy materials, annealing experiments were performed from T(g)--10 to T(g)--40 K for periods ranging from 15 min to 16 h. Fitting the extent of relaxation of glassy itraconazole to the Williams--Watts decay function and comparing the obtained values with those of amorphous miconazole and ketoconazole indicated that the molecular mobility is influenced by the complexity of the molecular structure. The more complex the structure, the more stable the amorphous state.


International Journal of Pharmaceutics | 2015

High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole

Zsombor Kristóf Nagy; Attila Balogh; Balázs Démuth; Hajnalka Pataki; T. Vigh; Bence Szabó; Kolos Molnár; Bence T. Schmidt; Péter Horák; György Marosi; Geert Verreck; Ivo Van Assche; Marcus E. Brewster

High speed electrospinning (HSES), compatible with pharmaceutical industry, was used to demonstrate the viability of the preparation of drug-loaded polymer nanofibers with radically higher productivity than the known single-needle electrospinning (SNES) setup. Poorly water-soluble itraconazole (ITRA) was formulated with PVPVA64 matrix polymer using four different solvent-based methods such as HSES, SNES, spray drying (SD) and film casting (FC). The formulations were assessed in terms of improvement in the dissolution rate of ITRA (using a tapped basket dissolution configuration) and analysed by SEM, DSC and XRPD. Despite the significantly increased productivity of HSES, the obtained morphology was very similar to the SNES nanofibrous material. ITRA transformed into an amorphous form, according to the DSC and XRPD results, in most cases except the FC samples. The limited dissolution of crystalline ITRA could be highly improved: fast dissolution occurred (>90% within 10min) in the cases of both (the scaled-up and the single-needle) types of electrospun fibers, while the improvement in the dissolution rate of the spray-dried microspheres was significantly lower. Production of amorphous solid dispersions (ASDs) with the HSES system proved to be flexibly scalable and easy to integrate into a continuous pharmaceutical manufacturing line, which opens new routes for the development of industrially relevant nanopharmaceuticals.


Journal of Thermal Analysis and Calorimetry | 2002

Thermal Properties of Hot-Stage Extrudates of Itraconazole and Eudragit E100. Phase separation and polymorphism

K. Six; Ch. Leuner; Jennifer B. Dressman; Geert Verreck; Jozef Peeters; Norbert Blaton; Patrick Augustijns; Renaat Kinget; G. Van den Mooter

Solid dispersions of itraconazole and eudragit E100 were prepared by hot-stage extrusion. Analysis of the physical structure revealed the existence of different phases, depending on the manufacturing condition. Extrudates prepared at 453 K existed as a molecular dispersion of itraconazole in eudragit E100 when the drug concentration did not exceed ca. 13% mass/mass. At higher concentrations, a second phase consisting of pure glassy itraconazole emerged. In other dispersions prepared at 413 K, the second phase consisted of pure crystalline itraconazole. The difference can be attributed to the relation of the process-temperature to the melting point. Heating of both dispersions induced cold crystallization. Extrudates prepared at 453 K showed comparable behavior before and after milling, with the exception that unmilled dispersions with a drug load of ≥60% mass/mass recrystallized upon heating into a polymorphic modification of itraconazole (Tm=431 K). Upon further heating the polymorph recrystallized to the stable crystalline form (Tm=441 K).


International Journal of Pharmaceutics | 2015

Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations

Balázs Démuth; Zsombor Kristóf Nagy; Attila Balogh; T. Vigh; György Marosi; Geert Verreck; I. Van Assche; Marcus E. Brewster

Application of amorphous solid dispersions (ASDs) is considered one of the most promising approaches to increase the dissolution rate and extent of bioavailability of poorly water soluble drugs. Such intervention is often required for new drug candidates in that enablement, bioavailability is not sufficient to generate a useful product. Importantly, tableting of ASDs is often complicated by a number of pharmaceutical and technological challenges including poor flowability and compressibility of the powders, compression-induced phase changes or phase separation and slow disintegration due to the formation of a gelling polymer network (GPN). The design principles of an ASD-based system include its ability to generate supersaturated systems of the drug of interest during dissolution. These metastable solutions can be prone to precipitation and crystallization reducing the biopharmaceutical performance of the dosage form. The main aim of the research in this area is to maintain the supersaturated state and optimally enhance bioavailability, meaning that crystallization should be delayed or inhibited during dissolution, as well as in solid phase (e.g., during manufacturing and storage). Based on the expanding use of ASD technology as well as their downstream processing, there is an acute need to summarize the results achieved to this point to better understand progress and future risks. The aim of this review is to focus on the conversion of ASDs into tablets highlighting results from various viewpoints.


International Journal of Pharmaceutics | 2015

Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions

Péter L. Sóti; Katalin Bocz; Hajnalka Pataki; Zsuzsanna Eke; Attila Farkas; Geert Verreck; Éva Kiss; Pál Fekete; Tamás Vigh; István Wagner; Zsombor Kristóf Nagy; György Marosi

Three solvent based methods: spray drying (SD), electrospinning (ES) and air-assisted electrospinning (electroblowing; EB) were used to prepare solid dispersions of itraconazole and Eudragit E. Samples with the same API/polymer ratios were prepared in order to make the three technologies comparable. The structure and morphology of solid dispersions were identified by scanning electron microscopy and solid phase analytical methods such as, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman chemical mapping. Moreover, the residual organic solvents of the solid products were determined by static headspace-gas chromatography/mass spectroscopy measurements and the wettability of samples was characterized by contact angle measurement. The pharmaceutical performance of the three dispersion type, evaluated by dissolution tests, proved to be very similar. According to XRPD and DSC analyses, made after the production, all the solid dispersions were free of any API crystal clusters but about 10 wt% drug crystallinity was observed after three months of storage in the case of the SD samples in contrast to the samples produced by ES and EB in which the polymer matrix preserved the API in amorphous state.


International Journal of Pharmaceutics | 2016

Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning.

Balázs Démuth; Attila Farkas; Hajnalka Pataki; Attila Balogh; Bence Szabó; Enikő Borbás; Péter L. Sóti; T. Vigh; Éva Kiserdei; Balázs Farkas; J. Mensch; Geert Verreck; I. Van Assche; György Marosi; Zsombor Kristóf Nagy

In this research the long-term stability (one year) of amorphous solid dispersions (ASDs) prepared by high speed electrospinning was investigated at 25 °C/60% relative humidity (RH) (closed conditions) and 40 °C/75% RH (open conditions). Single needle electrospinning and film casting were applied as reference technologies. Itraconazole (ITR) was used as the model API in 40% concentration and the ASDs consisted of either one of the following polymers as a comparison: polyvinylpyrrolidone-vinyl acetate 6:4 copolymer (no hydrogen bonds between API and polymer) and hydroxypropyl methylcellulose (possible hydrogen bonds between oxo or tertiary nitrogen function of API and hydroxyl moiety of polymer). DSC, XRPD and dissolution characteristics of samples at 0, 3 and 12 months were investigated. In addition, Raman maps of certain electrospun ASDs were assessed to investigate crystallinity. A new chemometric method, based on Multivariate Curve Resolution-Alternating Least Squares algorithm, was developed to calculate the spectrum of amorphous ITR in the matrices and to determine the crystalline/amorphous ratio of aged samples. As it was expected ITR in single needle electrospun SDs was totally amorphous at the beginning, in addition hydroxypropyl methylcellulose could keep ITR in this form at 40 °C/75% RH up to one year due to the hydrogen bonds and high glass transition temperature of the SD. In polyvinylpyrrolidone-vinyl acetate matrix ITR remained amorphous at 25 °C/60% RH throughout one year. Materials prepared by scaled-up, high throughput version of electrospinning, which is compatible with pharmaceutical industry, also gained the same quality. Therefore these ASDs are industrially applicable and with an appropriate downstream process it would be possible to bring them to the market.


Journal of Pharmaceutical Sciences | 2016

Lubricant-Induced Crystallization of Itraconazole From Tablets Made of Electrospun Amorphous Solid Dispersion.

Balázs Démuth; Attila Farkas; Attila Balogh; Karolina Bartosiewicz; Johny Bertels; T. Vigh; Jurgen Mensch; Geert Verreck; Ivo Van Assche; György Marosi; Zsombor Kristóf Nagy

Investigation of downstream processing of nanofibrous amorphous solid dispersions to generate tablet formulation is in a quite early phase. Development of high speed electrospinning opened up the possibility to study tableting of electrospun solid dispersions (containing polyvinylpyrrolidone-vinyl acetate and itraconazole [ITR] in this case). This work was conducted to investigate the influence of excipients on dissolution properties and the feasibility of scaled-up rotary press tableting. The dissolution rates from tablets proved to be mainly composition dependent. Magnesium stearate acted as a nucleation promoting agent (providing an active hydrophobic environment for crystallization of ITR) hindering the total dissolution of ITR. This crystallization process proved to be temperature dependent as well. However, the extent of dissolution of more than 95% was realizable when a less hydrophobic lubricant, sodium stearyl fumarate (soluble in the medium), was applied. Magnesium stearate induced crystallization even if it was put in the dissolution medium next to proper tablets. After optimization of the composition, scaled-up tableting on a rotary press was carried out. Appropriate dissolution of ITR from tablets was maintained for 3 months at 25°C/60% relative humidity. HPLC measurements confirmed that ITR was chemically stable both in the course of downstream processing and storage.


Drug Development and Industrial Pharmacy | 2017

Oral bioavailability enhancement of flubendazole by developing nanofibrous solid dosage forms

T. Vigh; Balázs Démuth; Attila Balogh; Dorián L. Galata; Ivo Van Assche; Claire Mackie; Monica Vialpando; Ben Van Hove; Petros Psathas; Enikő Borbás; Hajnalka Pataki; Peter Boeykens; György Marosi; Geert Verreck; Zsombor Kristóf Nagy

Abstract The bioavailability of the anthelminthic flubendazole was remarkably enhanced in comparison with the pure crystalline drug by developing completely amorphous electrospun nanofibres with a matrix consisting of hydroxypropyl-β-cyclodextrin and polyvinylpyrrolidone. The thus produced formulations can potentially be active against macrofilariae parasites causing tropical diseases, for example, river blindness and elephantiasis, which affect altogether more than a hundred million people worldwide. The bioavailability enhancement was based on the considerably improved dissolution. The release of a dose of 40u2009mg could be achieved within 15u2009min. Accordingly, administration of the nanofibrous system ensured an increased plasma concentration profile in rats in contrast to the practically non-absorbable crystalline flubendazole. Furthermore, easy-to-grind fibers could be developed, which enabled compression of easily administrable immediate release tablets.

Collaboration


Dive into the Geert Verreck's collaboration.

Top Co-Authors

Avatar

Attila Balogh

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

György Marosi

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Zsombor Kristóf Nagy

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Balázs Démuth

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

T. Vigh

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Hajnalka Pataki

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Augustijns

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Attila Farkas

Budapest University of Technology and Economics

View shared research outputs
Researchain Logo
Decentralizing Knowledge