Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Augustijns is active.

Publication


Featured researches published by Patrick Augustijns.


Journal of Pharmaceutical Sciences | 2009

Supersaturating Drug Delivery Systems: The Answer to Solubility-Limited Oral Bioavailability?

Joachim Brouwers; Marcus E. Brewster; Patrick Augustijns

Contemporary pharmaceutical pipelines are often highly populated with poorly water-soluble drug candidates necessitating novel formulation technologies to provide dosage forms with appropriate biopharmaceutical properties. The configuration of supersaturating drug delivery systems (SDDS) is a promising concept to obtain adequate oral bioavailability. SDDS contain the drug in a high energy or otherwise rapidly dissolving form such that intraluminal concentrations above the saturation solubility of the drug are generated. For the strategy to be useful, the formed supersaturated solution must then be stabilized to allow for significant absorption and eventually sufficient bioavailability. The stabilization of a supersaturated solution can be accomplished by adding precipitation inhibitors which may act through a variety of mechanisms. The goal of this review is to assess methods and excipients associated with the development of SDDS and provide some context for their use. In addition, the future directions and factors likely to contribute to or detract from optimal dosage form selection are assessed. This includes a discussion on the potential effect of the gastrointestinal physiology on the ability to attain and maintain supersaturation as this information is essential in designing useful formulations based on the supersaturating concept.


International Journal of Pharmaceutics | 2008

Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products

Bernard Van Eerdenbrugh; Guy Van den Mooter; Patrick Augustijns

During the last 10-15 years, the formulation of drugs as nanocrystals has rapidly evolved into a mature drug delivery strategy, with currently five products on the market. The major characteristic of these systems is the rapid dissolution velocity, enabling bioavailability enhancement after oral administration. This mini-review focuses on recent advances with respect to three topics considering drug nanocrystals. The first topic is nanosuspension stabilization. A current literature status is provided and special attention is given to studies attempting to extend our physicochemical understanding of the underlying principles. The second part describes recent advances on miniaturization of nanosuspension production, to enable formulation screening during preclinical development. Finally, literature available on further nanosuspensions solidification is discussed, focussing on the maintenance of the preservation of the rapid dissolution properties of the nanocrystals after further downstream processing.


European Journal of Pharmaceutical Sciences | 2001

Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25.

G. Van den Mooter; M. Wuyts; Norbert Blaton; Roger Busson; P. Grobet; Patrick Augustijns; Renaat Kinget

The glass forming properties of ketoconazole were investigated using differential scanning calorimetry (DSC), by quench cooling liquid ketoconazole from T(m)+10 to 273.1 K, followed by subsequent heating at 5 K/min to T(m)+10 K. It was shown that liquid ketoconazole forms a glass which did not recrystallise following reheating, indicating its stability; T(g) was found to be 317.5+/-0.3 K. However, the presence of a small amount of crystalline ketoconazole was able to convert the amorphous drug back to the crystalline state: the addition of only 4.1% (w/w) of crystalline material converted 77.1% of the glass back to the crystalline state, and this value increased as the amount of added crystals increased. PVP K25 was found to be highly effective in the prevention of such recrystallisation, but only if the amorphous drug was formulated in a solid dispersion, since physical mixing of amorphous ketoconazole with the polymer resulted in recrystallisation of the former compound. Storage of the solid dispersions for 30 days at 298.1 K (both 0 and 52% RH) in the presence or absence of crystals did not result in recrystallisation of the amorphous drug. Solid dispersions formed compatible blends as one single T(g) was observed, which gradually increased with increasing amounts of PVP K25, indicating the anti-plasticising property of the polymer. The values of T(g) followed the Gordon-Taylor equation, indicating no significant deviation from ideality and suggesting the absence of strong and specific drug-polymer interactions, which was further confirmed with 13C NMR and FT-IR. It can be concluded therefore that the physical mechanism of the protective effect is not caused by drug-polymer interactions but due to the polymer anti-plasticising effect, thereby increasing the viscosity of the binary system and decreasing the diffusion of drug molecules necessary to form a lattice.


European Journal of Pharmaceutical Sciences | 2000

Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14

F. Damian; Norbert Blaton; Lieve Naesens; Jan Balzarini; Renaat Kinget; Patrick Augustijns; Guy Van den Mooter

The purpose of this study was to prepare and characterize solid dispersions of the antiviral thiocarboxanilide UC-781 with PEG 6000 and Gelucire 44/14 with the intention of improving its dissolution properties. The solid dispersions were prepared by the fusion method. Evaluation of the properties of the dispersions was performed using dissolution studies, differential scanning calorimetry, Fourier-transform infrared spectroscopy and X-ray powder diffraction. To investigate the possible formation of solid solutions of the drug in the carriers, the lattice spacings [d] of PEG 6000 and Gelucire 44/14 were determined in different concentrations of UC-781. The results obtained showed that the rate of dissolution of UC-781 was considerably improved when formulated in solid dispersions with PEG 6000 and Gelucire 44/14 as compared to pure UC-781. From the phase diagrams of PEG 6000 and Gelucire 44/14 it could be noted that up to approximately 25% w/w of the drug was dissolved in the liquid phase in the case of PEG 6000 and Gelucire 44/14. The data from the X-ray diffraction showed that the drug was still detectable in the solid state below a concentration of 5% w/w in the presence of PEG 6000 and Gelucire 44/14, while no significant changes in the lattice spacings of PEG 6000 or Gelucire 44/14 were observed. Therefore, the possibility of UC-781 to form solid solutions with the carriers under investigation was ruled out. The results from infrared spectroscopy together with those from X-ray diffraction and differential scanning calorimetry showed the absence of well-defined drug-polymer interactions.


International Journal of Pharmaceutics | 1998

Physico-chemical characterization of solid dispersions of temazepam with polyethylene glycol 6000 and PVP K30

G. Van den Mooter; Patrick Augustijns; Norbert Blaton; Renaat Kinget

Abstract In order to increase the dissolution of temazepam, solid dispersions were prepared using polyethylene glycol 6000 (PEG 6000) and polyvinylpyrrolidone K30 (PVP K30). Dispersions with PEG 6000 were prepared by fusion-cooling and co-evaporation, while dispersions containing PVP K30 were prepared by co-evaporation. In contrast to the very slow dissolution rate of pure temazepam, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as particle size reduction and decrease of the crystalline fraction of the drug. The aqueous solubility of temazepam was favoured by the presence of PEG 6000. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. It was found that temazepam was decomposed in the presence of aqueous solutions of PVP K30 to at least two unidentified degradation products. Drug–polymer interactions in the solid state were investigated using differential scanning calorimetry, X-ray powder diffraction, and fourier-transform infrared spectroscopy. PEG 6000 gave a eutectic system in which liquid polymer could dissolve approximately 10% of temazepam. On the other hand, X-ray powder diffraction patterns and thermal analysis indicated that the drug was in the amorphous state up to a concentration of 40% w/w when dispersed in PVP K30; the infrared spectra indicated solid state interactions between the OH of temazepam and the CO of PVP K30.


Journal of Pharmaceutical Sciences | 2009

Ordered mesoporous silica material SBA-15: a broad-spectrum formulation platform for poorly soluble drugs.

Michiel Van Speybroeck; Valéry Barillaro; Thao Do Thi; Randy Mellaerts; Johan A. Martens; Jan Van Humbeeck; Jan Vermant; Pieter Annaert; Guy Van den Mooter; Patrick Augustijns

Encapsulating poorly soluble drugs in mesoporous silicates is an emerging strategy to improve drug dissolution. This study evaluates the applicability of the ordered mesoporous silicate SBA-15 as an excipient to enhance dissolution, for a test series of 10 poorly soluble compounds with a high degree of physicochemical diversity (carbamazepine, cinnarizine, danazol, diazepam, fenofibrate, griseofulvin, indomethacin, ketoconazole, nifedipine, and phenylbutazone). A generic solvent impregnation method was used to load all model compounds. The target drug content was 20%. The physical nature of the formulations was investigated using differential scanning calorimetry (DSC) and the pharmaceutical performance evaluated by means of in vitro dissolution. Aliquots of each formulation were stored at 25 degrees C/52% RH for 6 months, and again subjected to DSC and in vitro dissolution. The target drug content of 20% was attained in all cases. DSC data evidenced the noncrystalline state of the confined drugs. All SBA-15 formulations exhibited an enhanced dissolution as compared to their corresponding crystalline materials, and the high pharmaceutical performance of all formulations was retained during the 6 months storage period. The results of this study suggest that encapsulation in SBA-15 can be applied as a dissolution-enhancing formulation approach for a very wide variety of poorly soluble drugs.


European Journal of Pharmaceutical Sciences | 2008

Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories

Rose Hayeshi; Constanze Hilgendorf; Per Artursson; Patrick Augustijns; Birger Brodin; Pascale Dehertogh; Karen Fisher; Lina Fossati; Egbert Hovenkamp; Timo Korjamo; C. Masungi; Nathalie Maubon; Raf Mols; Anette Müllertz; Jukka Mönkkönen; Caitriona M. O'Driscoll; H M Oppers-Tiemissen; Eva Ragnarsson; Martijn Rooseboom; Anna-Lena Ungell

Caco-2 cells, widely used to study carrier mediated uptake and efflux mechanisms, are known to have different properties when cultured under different conditions. In this study, Caco-2 cells from 10 different laboratories were compared in terms of mRNA expression levels of 72 drug and nutrient transporters, and 17 other target genes, including drug metabolising enzymes, using real-time PCR. The rank order of the top five expressed genes was: HPT1>GLUT3>GLUT5>GST1A>OATP-B. Rank correlation showed that for most of the samples, the gene ranking was not significantly different. Functionality of transporters and the permeability of passive transport markers metoprolol (transcellular) and atenolol (paracellular) were also compared. MDR1 and PepT1 function was investigated using talinolol and Gly-Sar transport, respectively. Sulfobromophthalein (BSP) was used as a marker for MRP2 and OATP-B functionality. Atenolol permeability was more variable across laboratories than metoprolol permeability. Talinolol efflux was observed by all the laboratories, whereas only five laboratories observed significant apical uptake of Gly-Sar. Three laboratories observed significant efflux of BSP. MDR1 expression significantly correlated to the efflux ratio and net active efflux of talinolol. PepT1 mRNA levels showed significant correlation to the uptake ratio and net active uptake of Gly-Sar. MRP2 and OATP-B showed no correlation to BSP transport parameters. Heterogeneity in transporter activity may thus be due to differences in transporter expression as shown for PepT1 and MDR1 which in turn is determined by the culture conditions. Absolute expression of genes was variable indicating that small differences in culture conditions have a significant impact on gene expression, although the overall expression patterns were similar.


European Journal of Pharmaceutical Sciences | 2014

In vitro models for the prediction of in vivo performance of oral dosage forms.

Edmund S. Kostewicz; Bertil Abrahamsson; Marcus E. Brewster; Joachim Brouwers; James Butler; Sara Carlert; Paul A. Dickinson; Jennifer B. Dressman; René Holm; Sandra Klein; James Mann; Mark McAllister; Mans Minekus; Uwe Muenster; Anette Müllertz; Miriam Verwei; Maria Vertzoni; Werner Weitschies; Patrick Augustijns

Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored. More recently, the switch to assessing drug products in a more biorelevant and mechanistic manner has advanced the understanding of drug formulation behavior. Notwithstanding this evolution, predicting the in vivo biopharmaceutical performance of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro tools. Development and optimizing innovative, predictive Oral Biopharmaceutical Tools is the main target of the OrBiTo project within the Innovative Medicines Initiative (IMI) framework. A combination of physico-chemical measurements, in vitro tests, in vivo methods, and physiology-based pharmacokinetic modeling is expected to create a unique knowledge platform, enabling the bottlenecks in drug development to be removed and the whole process of drug development to become more efficient. As part of the basis for the OrBiTo project, this review summarizes the current status of predictive in vitro assessment tools for formulation behavior. Both pharmacopoeia-listed apparatus and more advanced tools are discussed. Special attention is paid to major issues limiting the predictive power of traditional tools, including the simulation of dynamic changes in gastrointestinal conditions, the adequate reproduction of gastrointestinal motility, the simulation of supersaturation and precipitation, and the implementation of the solubility-permeability interplay. It is anticipated that the innovative in vitro biopharmaceutical tools arising from the OrBiTo project will lead to improved predictions for in vivo behavior of drug formulations in the GI tract.


Journal of Pharmaceutical Sciences | 2009

A screening study of surface stabilization during the production of drug nanocrystals

Bernard Van Eerdenbrugh; Jan Vermant; Johan A. Martens; Ludo Froyen; Jan Van Humbeeck; Patrick Augustijns; Guy Van den Mooter

In order to establish a knowledge base for nanosuspension production, a screening was performed on 13 different stabilizers at 3 concentrations for 9 structurally different drug compounds. Concerning the stabilizers tested, the group of semi-synthetic polymers was the least performant (stable nanosuspensions were obtained in only 1 out of 10 cases). For the linear synthetic polymers, better results were obtained with povidones, however poly(vinyl alcohol) did not result in adequate stabilization. The synthetic copolymers showed even higher success rates, resulting in nanosuspensions in two out of three cases when applied at a 100 wt% concentration (relative to the drug weight). Finally, the surfactants gave the best results, with TPGS being successful at concentrations of 25 or 100 wt% of the drug weight for all compounds tested. From the point of view of drug compound, large differences could be observed upon evaluation of the relative number of formulations of that compound resulting in nanosuspensions. It was found that the hydrophobicity of the surfaces, as estimated by the adsorbed amount of TPGS per unit of surface area of nanosuspensions stabilized with 25 wt% TPGS, was decisive for the agglomeration tendency of the particles and hence the ease of nanosuspensions stabilization.


European Journal of Pharmaceutical Sciences | 2008

Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion.

Bernard Van Eerdenbrugh; Ludo Froyen; Jan Van Humbeeck; Johan A. Martens; Patrick Augustijns; Guy Van den Mooter

d-alpha-Tocopherol polyethylene glycol 1000 succinate (TPGS)-stabilized nanosuspensions (25wt%, relative to the drug weight) were produced by media milling for 9 model drug compounds [cinnarizine, griseofulvin, indomethacin, itraconazole, loviride, mebendazole, naproxen, phenylbutazone and phenytoin]. After 3 months of storage at room temperature, Ostwald ripening occurred in all of the samples, except for indomethacin. Whereas lowering the temperature could slow down the ripening, it markedly increased upon storage at 40 degrees C. As for ripening, settling generally became more pronounced at 40 degrees C compared to 4 degrees C. As the nanosuspensions were afflicted by Ostwald ripening and settling, we explored nanosuspension drying as a strategy to circumvent these stability issues. Spray-drying and freeze-drying were evaluated for nanosuspensions and coarse reference suspensions of the compounds. Nanoparticle agglomeration could be visually observed in all of the powders. To evaluate the effect of agglomeration on the key characteristic of drug nanocrystals (i.e. rapid dissolution), dissolution experiments were performed under poor sink conditions. It was found that the compounds could be categorized into 3 groups: (i) compounds for which it was impossible to differentiate between coarse and nanosized products (griseofulvin, mebendazole, naproxen), (ii) compounds that gave clear differences in dissolution profiles between the nanosized and the coarse products, but for which drying of the nanosuspensions did not decrease the dissolution performance of the product (indomethacin, loviride, phenytoin) and (iii) compounds that showed differences between coarse and nanosized products, but for which drying of the nanosuspensions resulted in a significant decrease of the dissolution rate (cinnarizine, itraconazole, phenylbutazone). To gain insight on the influence of the drug compound characteristics on the dissolution of the dried products, the dissolution behavior of the compounds of the second and the third group was linked to the compounds characteristics. It was found that compounds with a more hydrophobic surface resulted in agglomerates which were harder to disintegrate, for which dissolution was compromised upon drying. The same was found for compounds having higher logP values.

Collaboration


Dive into the Patrick Augustijns's collaboration.

Top Co-Authors

Avatar

Pieter Annaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Joachim Brouwers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Renaat Kinget

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Guy Van den Mooter

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan Tack

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

G. Van den Mooter

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Johan A. Martens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Raf Mols

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bart Van Der Schueren

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge