Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geetha Kannan is active.

Publication


Featured researches published by Geetha Kannan.


Biological Psychiatry | 2010

Prenatal Interaction of Mutant DISC1 and Immune Activation Produces Adult Psychopathology

Bagrat Abazyan; Jun Nomura; Geetha Kannan; Koko Ishizuka; Kellie L. Tamashiro; Frederick Nucifora; Vladimir Pogorelov; Bruce Ladenheim; Chunxia Yang; Irina N. Krasnova; Jean Lud Cadet; Carlos Pardo; Susumu Mori; Atsushi Kamiya; Michael W. Vogel; Akira Sawa; Christopher A. Ross; Mikhail V. Pletnikov

BACKGROUND Gene-environment interactions (GEI) are involved in the pathogenesis of mental diseases. We evaluated interaction between mutant human disrupted-in-schizophrenia 1 (mhDISC1) and maternal immune activation implicated in schizophrenia and mood disorders. METHODS Pregnant mice were treated with saline or polyinosinic:polycytidylic acid at gestation day 9. Levels of inflammatory cytokines were measured in fetal and adult brains; expression of mhDISC1, endogenous DISC1, lissencephaly type 1, nuclear distribution protein nudE-like 1, glycoprotein 130, growth factor receptor-bound protein 2, and glycogen synthase kinase-3beta were assessed in cortical samples of newborn mice. Tissue content of monoamines, volumetric brain abnormalities, dendritic spine density in the hippocampus, and various domains of the mouse behavior repertoire were evaluated in adult male mice. RESULTS Prenatal interaction produced anxiety, depression-like responses, and altered social behavior that were accompanied by decreased reactivity of the hypothalamic-pituitary-adrenal axis, attenuated serotonin neurotransmission in the hippocampus, reduced enlargement of lateral ventricles, decreased volumes of amygdala and periaqueductal gray matter and density of spines on dendrites of granule cells of the hippocampus. Prenatal interaction modulated secretion of inflammatory cytokines in fetal brains, levels of mhDISC1, endogenous mouse DISC1, and glycogen synthase kinase-3beta. The behavioral effects of GEI were observed only if mhDISC1 was expressed throughout the life span. CONCLUSIONS Prenatal immune activation interacted with mhDISC1 to produce the neurobehavioral phenotypes that were not seen in untreated mhDISC1 mice and that resemble aspects of major mental illnesses. Our DISC1 mouse model is a valuable system to study GEI relevant to mental illnesses.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Chlorovirus ATCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice

Robert H. Yolken; Lorraine Jones-Brando; David D. Dunigan; Geetha Kannan; Faith Dickerson; Emily G. Severance; Sarven Sabunciyan; C. Conover Talbot; Emese Prandovszky; James R. Gurnon; Irina V. Agarkova; Flora Leister; Kristin L. Gressitt; Ou Chen; Bryan Deuber; Fangrui Ma; Mikhail V. Pletnikov; James L. Van Etten

Significance Human mucosal surfaces contain a wide range of microorganisms. The biological effects of these organisms are largely unknown. Large-scale metagenomic sequencing is emerging as a method to identify novel microbes. Unexpectedly, we identified DNA sequences homologous to virus ATCV-1, an algal virus not previously known to infect humans, in oropharyngeal samples obtained from healthy adults. The presence of ATCV-1 was associated with a modest but measurable decrease in cognitive functioning. A relationship between ATCV-1 and cognitive functioning was confirmed in a mouse model, which also indicated that exposure to ATCV-1 resulted in changes in gene expression within the brain. Our study indicates that viruses in the environment not thought to infect humans can have biological effects. Chloroviruses (family Phycodnaviridae) are large DNA viruses known to infect certain eukaryotic green algae and have not been previously shown to infect humans or to be part of the human virome. We unexpectedly found sequences homologous to the chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) in a metagenomic analysis of DNA extracted from human oropharyngeal samples. These samples were obtained by throat swabs of adults without a psychiatric disorder or serious physical illness who were participating in a study that included measures of cognitive functioning. The presence of ATCV-1 DNA was confirmed by quantitative PCR with ATCV-1 DNA being documented in oropharyngeal samples obtained from 40 (43.5%) of 92 individuals. The presence of ATCV-1 DNA was not associated with demographic variables but was associated with a modest but statistically significant decrease in the performance on cognitive assessments of visual processing and visual motor speed. We further explored the effects of ATCV-1 in a mouse model. The inoculation of ATCV-1 into the intestinal tract of 9–11-wk-old mice resulted in a subsequent decrease in performance in several cognitive domains, including ones involving recognition memory and sensory-motor gating. ATCV-1 exposure in mice also resulted in the altered expression of genes within the hippocampus. These genes comprised pathways related to synaptic plasticity, learning, memory formation, and the immune response to viral exposure.


Neuroscience | 2012

Sex-specific changes in gene expression and behavior induced by chronic Toxoplasma infection in mice.

Jianchun Xiao; Geetha Kannan; Lorraine Jones-Brando; C. Brannock; Irina N. Krasnova; Jean-Lud Cadet; Mikhail V. Pletnikov; Robert H. Yolken

There is growing evidence that Toxoplasma gondii modifies the behavior of its intermediate hosts. We investigated the molecular basis of these infection-induced behavioral changes, followed by five related behavioral tests to assess the extent of biological relevance. Gene expression signatures were generated in the frontal cortex of male and female mice during the latent stage of infection. We found marked sex-dependent expression differences in mice. In female mice, Toxoplasma infection altered the expression of genes involved in the development of the forebrain, neurogenesis, and sensory and motor coordination (i.e. downregulation of fatty acid-binding protein 7 and eyes absent homolog 1, upregulation of semaphorin 7A). In male mice, infection led mainly to modulation of genes associated with olfactory function (i.e. downregulation of a number of olfactory receptors and dopamine receptor D4, upregulation of slit homolog 1). Although infection appears to affect the olfactory function in male mice, it is the female but not male mice that exhibited attraction to cat odor. In contrast, infected male mice showed a deficit in social transmission of food preference. In contrast to males, infected females displayed locomotor hyperactivity in open field. General olfaction and sensorimotor gating were normal in both male and female infection. Our results indicate that the sex of the host plays a major role in determining variable brain and behavior changes following Toxoplasma infection. These observations are consistent with heterogeneity of neuropsychiatric outcomes of the infection in humans.


Neurobiology of Disease | 2013

Mouse models of gene-environment interactions in schizophrenia.

Geetha Kannan; Akira Sawa; Mikhail V. Pletnikov

Gene-environment interactions (GEIs) likely play significant roles in the pathogenesis of schizophrenia and underlie differences in pathological, behavioral, and clinical presentations of the disease. Findings from epidemiology and psychiatric genetics have assisted in the generation of animal models of GEI relevant to schizophrenia. These models may provide a foundation for elucidating the molecular, cellular, and circuitry mechanisms that mediate GEI in schizophrenia. Here we critically review current mouse models of GEI related to schizophrenia, describe directions for their improvement, and propose endophenotypes to provide a more tangible basis for molecular studies of pathways of GEI and facilitate the identification of novel therapeutic targets.


PLOS ONE | 2012

Anti-Gluten Immune Response following Toxoplasma gondii Infection in Mice

Emily G. Severance; Geetha Kannan; Kristin L. Gressitt; Jianchun Xiao; Armin Alaedini; Mikhail V. Pletnikov; Robert H. Yolken

Gluten sensitivity may affect disease pathogenesis in a subset of individuals who have schizophrenia, bipolar disorder or autism. Exposure to Toxoplasma gondii is a known risk factor for the development of schizophrenia, presumably through a direct pathological effect of the parasite on brain and behavior. A co-association of antibodies to wheat gluten and to T. gondii in individuals with schizophrenia was recently uncovered, suggesting a coordinated gastrointestinal means by which T. gondii and dietary gluten might generate an immune response. Here, we evaluated the connection between these infectious- and food-based antigens in mouse models. BALB/c mice receiving a standard wheat-based rodent chow were infected with T. gondii via intraperitoneal, peroral and prenatal exposure methods. Significant increases in the levels of anti-gluten IgG were documented in all infected mice and in offspring from chronically infected dams compared to uninfected controls (repetitive measures ANOVAs, two-tailed t-tests, all p≤0.00001). Activation of the complement system accompanied this immune response (p≤0.002–0.00001). Perorally-infected females showed higher levels of anti-gluten IgG than males (p≤0.009) indicating that T. gondii-generated gastrointestinal infection led to a significant anti-gluten immune response in a sex-dependent manner. These findings support a gastrointestinal basis by which two risk factors for schizophrenia, T. gondii infection and sensitivity to dietary gluten, might be connected to produce the immune activation that is becoming an increasingly recognized pathology of psychiatric disorders.


Neuropharmacology | 2012

Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model

Vladimir Pogorelov; Jun Nomura; Jongho Kim; Geetha Kannan; Yavuz Ayhan; Chunxia Yang; Yu Taniguchi; Bagrat Abazyan; Heather Valentine; Irina N. Krasnova; Atsushi Kamiya; Jean Lud Cadet; Dean F. Wong; Mikhail V. Pletnikov

Genetic factors involved in neuroplasticity have been implicated in major psychiatric illnesses such as schizophrenia, depression, and substance abuse. Given its extended interactome, variants in the Disrupted-In-Schizophrenia-1 (DISC1) gene could contribute to drug addiction and psychiatric diseases. Thus, we evaluated how dominant-negative mutant DISC1 influenced the neurobehavioral and molecular effects of methamphetamine (METH). Control and mutant DISC1 mice were studied before or after treatment with non-toxic escalating dose (ED) of METH. In naïve mice, we assessed METH-induced conditioned place preference (CPP), dopamine (DA) D2 receptor density and the basal and METH-induced activity of DISC1 partners, AKT and GSK-3β in the ventral striatum. In ED-treated mice, 4 weeks after METH treatment, we evaluated fear conditioning, depression-like responses in forced swim test, and the basal and METH-induced activity of AKT and GSK-3β in the ventral striatum. We found impairment in METH-induced CPP, decreased DA D2 receptor density and altered METH-induced phosphorylation of AKT and GSK-3β in naïve DISC1 female mice. The ED regimen was not neurotoxic as evidenced by unaltered brain regional monoamine tissue content. Mutant DISC1 significantly delayed METH ED-produced sensitization and affected drug-induced phosphorylation of AKT and GSK-3β in female mice. Our results suggest that perturbations in DISC1 functions in the ventral striatum may impact the molecular mechanisms of reward and sensitization, contributing to comorbidity between drug abuse and major mental diseases.


Schizophrenia Bulletin | 2012

Toxoplasma Gondii and Cognitive Deficits in Schizophrenia: An Animal Model Perspective

Geetha Kannan; Mikhail V. Pletnikov

Cognitive deficits are a core feature of schizophrenia. Epidemiological evidence indicates that microbial pathogens may contribute to cognitive impairment in patients with schizophrenia. Exposure to Toxoplasma gondii (T. gondii) has been associated with cognitive deficits in humans. However, the mechanisms whereby the parasite impacts cognition remain poorly understood. Animal models of T. gondii infection may aid in elucidating the underpinnings of cognitive dysfunction. Here, we (1) overview the literature on the association of T. gondii infection and cognitive impairment, (2) critically analyze current rodent models of cognitive deficits resulting from T. gondii infection, and (3) explore possible mechanisms whereby the parasite may affect cognitive function.


Microbes and Infection | 2013

The Toxoplasma MAG1 peptides induce sex-based humoral immune response in mice and distinguish active from chronic human infection

Jianchun Xiao; Raphael P. Viscidi; Geetha Kannan; Mikhail V. Pletnikov; Ye Li; Emily G. Severance; Robert H. Yolken; Laurence Delhaes

To distinguish active from inactive/chronic infection in Toxoplasma gondii-seropositive individuals, we have developed an enzyme-linked immunosorbent assay (ELISA) using specific peptides derived from Toxoplasma matrix antigen MAG1. We used this assay to measure matrix specific antibodies and pilot studies with infected mice established the validity of two peptides. The immune response against MAG1 occurs in about 12 days postinfection and displays a sex difference later on in mouse model, with males producing higher antibody titers than females. Serum samples from 22 patients with clinical toxoplasmosis and from 26 patients with serological evidence of past exposure to Toxoplasma (more than one year infection history) were analyzed. Both MAG1 peptides detected antibodies significant frequently and robustly from active stage than from the chronic stage of toxoplasmosis. The results indicate that both MAG1 peptides may be used as a tool to differentiate active from inactive infection. It also may be considered in the design of potential vaccines in humans.


Neurobiology of Disease | 2016

Anti-NMDA receptor autoantibodies and associated neurobehavioral pathology in mice are dependent on age of first exposure to Toxoplasma gondii.

Geetha Kannan; Joshua Crawford; Chun Xia Yang; Kristin L. Gressitt; Chinezimuzo Ihenatu; Irina N. Krasnova; Jean Lud Cadet; Robert H. Yolken; Emily G. Severance; Mikhail V. Pletnikov

BACKGROUND Toxoplasma gondii is a pathogen implicated in psychiatric disorders. As elevated antibodies to T. gondii are also present in non-symptomatic individuals, we hypothesized that the age during first exposure to the pathogen may affect symptom manifestation. We tested this hypothesis by evaluating neurobehavioral abnormalities and the immune response in mice following adolescent or adult T. gondii infection. METHODS Mice were infected with T. gondii at postnatal day 33 (adolescent/juvenile) or 61 (adult). At 8weeks post-infection (wpi), pre-pulse inhibition of the acoustic startle (PPI) in mice administered MK-801 (0.1 and 0.3mg/kg) and amphetamine (5 and 10mg/kg) was assessed. Peripheral (anti-T. gondii, C1q-associated IgG and anti-GLUN2 antibodies) and central (C1q and Iba1) markers of the immune response were also evaluated. In addition, regional brain expression of N-methyl-d-aspartate receptor (NMDAR) subunits (GLUN1 and GLUN2A), glutamatergic (vGLUT1, PSD95) and GABAergic (GAD67) markers, and monoamines (DA, NE, 5-HT) and their metabolites were measured. RESULTS Juvenile and adult infected mice exhibited opposite effects of MK-801 on PPI, with decreased PPI in juveniles and increased PPI in adults. There was a significantly greater elevation of GLUN2 autoantibodies in juvenile-compared to adult-infected mice. In addition, age-dependent differences were found in regional expression of NMDAR subunits and markers of glutamatergic, GABAergic, and monoaminergic systems. Activated microglia and C1q elevations were found in both juvenile- and adult-T. gondii infected mice. CONCLUSIONS Our study demonstrates that the age at first exposure to T. gondii is an important factor in shaping distinct behavioral and neurobiological abnormalities. Elevation in GLUN2 autoantibodies or complement protein C1q may be a potential underlying mechanism. A better understanding of these age-related differences may lead to more efficient treatments of behavioral disorders associated with T. gondii infection.


Brain Behavior and Immunity | 2016

Cerebral complement C1q activation in chronic Toxoplasma infection

Jianchun Xiao; Ye Li; Kristin L. Gressitt; Helen He; Geetha Kannan; Tracey L. Schultz; Nadezhda Svezhova; Vern B. Carruthers; Mikhail V. Pletnikov; Robert H. Yolken; Emily G. Severance

Exposure to the neurotropic parasite, Toxoplasma gondii, causes significant brain and behavioral anomalies in humans and other mammals. Understanding the cellular mechanisms of T. gondii-generated brain pathologies would aid the advancement of novel strategies to reduce disease. Complement factor C1q is part of a classic immune pathway that functions peripherally to tag and remove infectious agents and cellular debris from circulation. In the developing and adult brain, C1q modifies neuronal architecture through synapse marking and pruning. T. gondii exposure and complement activation have both been implicated in the development of complex brain disorders such as schizophrenia. Thus, it seems logical that mechanistically, the physiological pathways associated with these two factors are connected. We employed a rodent model of chronic infection to investigate the extent to which cyst presence in the brain triggers activation of cerebral C1q. Compared to uninfected mice, cortical C1q was highly expressed at both the RNA and protein levels in infected animals bearing a high cyst burden. In these mice, C1q protein localized to cytoplasm, adjacent to GFAP-labeled astrocytes, near degenerating cysts, and in punctate patterns along processes. In summary, our results demonstrated an upregulation of cerebral C1q in response to latent T. gondii infection. Our data preliminarily suggest that this complement activity may aid in the clearance of this parasite from the CNS and in so doing, have consequences for the connectivity of neighboring cells and synapses.

Collaboration


Dive into the Geetha Kannan's collaboration.

Top Co-Authors

Avatar

Mikhail V. Pletnikov

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Robert H. Yolken

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Emily G. Severance

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jianchun Xiao

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Kristin L. Gressitt

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ye Li

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Lorraine Jones-Brando

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina N. Krasnova

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge