Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geli Gao is active.

Publication


Featured researches published by Geli Gao.


The Journal of Infectious Diseases | 2004

Tissue-Specific Contributions of Pneumococcal Virulence Factors to Pathogenesis

Carlos J. Orihuela; Geli Gao; Kevin P. Francis; Jun Yu; Elaine Tuomanen

We assessed the ability of Streptococcus pneumoniae mutants deficient in either choline binding protein A (CbpA), pneumolysin (Pln), pyruvate oxidase (SpxB), autolysin (LytA), pneumococcal surface protein A, or neuraminidase A (NanA) to replicate in distinct anatomical sites and translocate from one site to the next. Intranasal, intratracheal, and intravenous models of disease were assessed in 4-week-old BALB/cJ mice by quantitation of bacterial titers in the relevant organs. Mice were also observed by use of real-time bioluminescent imaging (BLI). BLI allowed visualization of the bacteria in sites not tested by sampling. All mutants were created in D39 Xen7, a fully virulent derivative of capsular type 2 strain D39 that contains an optimized luxABCDE cassette. NanA, SpxB, and, to a lesser extent, CbpA contributed to prolonged nasopharyngeal colonization, whereas CbpA and NanA contributed to the transition to the lower respiratory tract. Once lung infection was established, Pln, SpxB, and LytA contributed to bacterial replication in the lungs and translocation to the bloodstream. In the bloodstream, only Pln and LytA were required for high-titer replication, whereas CbpA was required for invasion of the cerebrospinal fluid. We conclude that transitions between body sites require virulence determinants distinct from those involved in organ-specific replication.


Infection and Immunity | 2004

Microarray Analysis of Pneumococcal Gene Expression during Invasive Disease

Carlos J. Orihuela; Jana N. Radin; Jack Sublett; Geli Gao; Deepak Kaushal; Elaine Tuomanen

ABSTRACT Streptococcus pneumoniae is a leading cause of invasive bacterial disease. This is the first study to examine the expression of S. pneumoniae genes in vivo by using whole-genome microarrays available from The Institute for Genomic Research. Total RNA was collected from pneumococci isolated from infected blood, infected cerebrospinal fluid, and bacteria attached to a pharyngeal epithelial cell line in vitro. Microarray analysis of pneumococcal genes expressed in these models identified body site-specific patterns of expression for virulence factors, transporters, transcription factors, translation-associated proteins, metabolism, and genes with unknown function. Contributions to virulence predicted for several unknown genes with enhanced expression in vivo were confirmed by insertion duplication mutagenesis and challenge of mice with the mutants. Finally, we cross-referenced our results with previous studies that used signature-tagged mutagenesis and differential fluorescence induction to identify genes that are potentially required by a broad range of pneumococcal strains for invasive disease.


Molecular Microbiology | 2009

Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae

Jason W. Rosch; Geli Gao; Granger Ridout; Yong-Dong Wang; Elaine Tuomanen

The ability of bacteria to sense and respond to both environmental and intracellular metal concentrations plays an important role in pathogenesis. The acquisition of manganese is vital for the virulence of several bacterial species. Although manganese uptake systems have been well studied in bacteria, no manganese efflux system has yet been identified. In this study we have identified a cation diffusion facilitator (CDF) protein (Sp1552) of unknown substrate specificity that functions as a manganese export system in Streptococcus pneumoniae. We designated the gene for this manganese efflux system mntE and found that the mutant strain was highly sensitive to manganese stress. Although the mutant was more resistant to oxidative stress and produced more H2O2 and pili, it had reduced virulence in a murine model of infection, indicating that manganese export plays a role in host pathogenesis. There was a distinct differential transcriptional response to extracellular and intracellular manganese accumulation. Our study indicates that manganese efflux is required for invasive disease and may provide a useful antimicrobial target to devise future therapeutics.


Scandinavian Journal of Infectious Diseases | 2003

Organ-specific models of Streptococcus pneumoniae disease.

Carlos J. Orihuela; Geli Gao; Mackenzie McGee; Jun Yu; Kevin P. Francis; Elaine Tuomanen

The variability of the course of infection by Streptococcus pneumoniae is well known but poorly understood. Most animal models of pneumonia, sepsis or meningitis have been forced to use site-specific bacterial inoculation to mimic localized human infection. This study examined the differences in the progression of disease-causing strains D39 (serotype 2), A66.1 (serotype 3) and TIGR4 (serotype 4) using isolates transformed with the Gram-positive lux transposon cassette, Tn4001 luxABCDE Kmr. Expression of the lux operon results in bioluminescence, permitting the detection of the bacteria within a living animal while using a CCD camera. Mice infected intranasally with A66.1 developed only pneumonia, those challenged with D39 experienced high-grade sepsis, while TIGR4 infection resulted in low-grade pneumonia and bacteremia ultimately progressing to meningitis. Quantitative analysis of bacterial titers confirmed these patterns, which were consistent across different lineages of mice. Mice anesthetized with ketamine and xylazine developed more severe forms of the disease compared with isoflurane. These studies unambiguously characterize 3 distinct models of the natural course of pneumococcal infection. Mapping these models provides a framework for detailed molecular modeling of pneumococcal virulence determinants at specific stages of disease.


PLOS Pathogens | 2015

Pore-Forming Toxins Induce Macrophage Necroptosis during Acute Bacterial Pneumonia.

Norberto Gonzalez-Juarbe; Ryan P. Gilley; Cecilia A. Hinojosa; Kelley M. Bradley; Akinobu Kamei; Geli Gao; Peter H. Dube; Molly A. Bergman; Carlos J. Orihuela

Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.


Molecular Microbiology | 2008

Calcium efflux is essential for bacterial survival in the eukaryotic host.

Jason W. Rosch; Jack Sublett; Geli Gao; Yong-Dong Wang; Elaine Tuomanen

In dynamic environments, intracellular homeostasis is maintained by transport systems found in all cells. While bacterial influx systems for essential trace cations are known to contribute to pathogenesis, efflux systems have been characterized mainly in contaminated environmental sites. We describe that the high calcium concentrations in the normal human host were toxic to pneumococci and that bacterial survival in vivo depended on CaxP, the first Ca2+ exporter reported in bacteria. CaxP homologues were found in the eukaryotic sacroplasmic reticulum and in many bacterial genomes. A caxP− mutant accumulated intracellular calcium, a state that was used to reveal signalling networks responsive to changes in intracellular calcium concentration. Chemical inhibition of CaxP was bacteriostatic in physiological calcium concentrations, suggesting a new antibiotic target uncovered under conditions in the eukaryotic host.


Infection and Immunity | 2006

Multifunctional Role of Choline Binding Protein G in Pneumococcal Pathogenesis

Beth Mann; Carlos J. Orihuela; J. Antikainen; Geli Gao; Jack Sublett; Timo K. Korhonen; Elaine Tuomanen

ABSTRACT Members of the choline binding protein (Cbp) family are noncovalently bound to phosphorylcholine residues on the surface of Streptococcus pneumoniae. It has been suggested that CbpG plays a role in adherence and increase virulence both at the mucosal surface and in the bloodstream, but the function of this protein has been unclear. A new sequence analysis indicated that CbpG is a possible member of the S1 family of multifunctional surface-associated serine proteases. Clinical isolates contained two alleles of cbpG, and one-third of the strains expressed a truncated protein lacking the C-terminal, cell wall-anchoring choline binding domain. CbpG on the surface of pneumococci (full length) or released into the supernatant (truncated) showed proteolytic activity for fibronectin and casein, as did CbpG expressed on lactobacilli or as a purified full-length or truncated recombinant protein. Recombinant CbpG (rCbpG)-coated beads adhered to eukaryotic cells, and TIGR4 mutants lacking CbpG or having a truncated CbpG protein showed decreased adherence in vitro and attenuation of disease in mouse challenge models of colonization, pneumonia, and bacteremia. Immunization with rCbpG was protective in an animal model of colonization and sepsis. We propose that CbpG is a multifunctional surface protein that in the cell-attached or secreted form cleaves host extracellular matrix and in the cell-attached form participates in bacterial adherence. This is the first example of distinct functions in virulence that are dependent on natural variation in expression of a choline binding domain.


The Journal of Infectious Diseases | 2014

Broadly Protective Protein-Based Pneumococcal Vaccine Composed of Pneumolysin Toxoid–CbpA Peptide Recombinant Fusion Protein

Beth Mann; Justin Thornton; Richard J. Heath; Kristin R. Wade; Rodney K. Tweten; Geli Gao; Karim C. El Kasmi; John B. Jordan; Diana M. Mitrea; Richard W. Kriwacki; Jeff Maisonneuve; Mark Alderson; Elaine Tuomanen

BACKGROUND  Pneumococcus, meningococcus, and Haemophilus influenzae cause a similar spectrum of infections in the ear, lung, blood, and brain. They share cross-reactive antigens that bind to the laminin receptor of the blood-brain barrier as a molecular basis for neurotropism, and this step in pathogenesis was addressed in vaccine design. METHODS  Biologically active peptides derived from choline-binding protein A (CbpA) of pneumococcus were identified and then genetically fused to L460D pneumolysoid. The fusion construct was tested for vaccine efficacy in mouse models of nasopharyngeal carriage, otitis media, pneumonia, sepsis, and meningitis. RESULTS  The CbpA peptide-L460D pneumolysoid fusion protein was more broadly immunogenic than pneumolysoid alone, and antibodies were active in vitro against Streptococcus pneumoniae, Neisseria meningitidis, and H. influenzae. Passive and active immunization protected mice from pneumococcal carriage, otitis media, pneumonia, bacteremia, meningitis, and meningococcal sepsis. CONCLUSIONS  The CbpA peptide-L460D pneumolysoid fusion protein was broadly protective against pneumococcal infection, with the potential for additional protection against other meningeal pathogens.


Infection and Immunity | 2006

Cell wall-mediated neuronal damage in early sepsis

Carlos J. Orihuela; Sophie Fillon; S. Hope Smith-Sielicki; Karim C. El Kasmi; Geli Gao; Konstantinos Soulis; Avinash S. Patil; Peter J. Murray; Elaine Tuomanen

ABSTRACT Neuronal dysfunction can occur in the course of sepsis without meningitis. Sepsis-associated neuronal damage (SAND) was observed in the hippocampus within hours in experimental pneumococcal bacteremia. Intravascular challenge with purified bacterial cell wall recapitulated SAND. SAND persisted in PAFr−/− mice but was partially mitigated in mice lacking cell wall recognition proteins TLR2 and Nod2 and in mice overexpressing interleukin-10 (IL-10) in macrophages. Thus, cell wall drives SAND through IL-10-repressible inflammatory events. Treatment with CDP-choline ameliorated SAND, suggesting that it may be an effective adjunctive therapy to increase survival and reduce organ damage in sepsis.


The Journal of Infectious Diseases | 2007

Hypersusceptibility to invasive pneumococcal infection in experimental sickle cell disease involves platelet-activating factor receptor

Martha L. Miller; Geli Gao; Tamara I. Pestina; Derek A. Persons; Elaine Tuomanen

Children with sickle cell disease have a 600-fold increased incidence of invasive pneumococcal disease. Platelet-activating factor receptor (PAFr) mediates pneumococcal invasion, and up-regulation of PAFr on chronically activated endothelia could contribute to increased bacterial invasion. Mice transplanted with sickle cell bone marrow developed more extensive infection, and 57% died, compared with 16% of wild-type mice. Histopathological analysis revealed that sickle cell mice expressed significantly more PAFr on endothelia and epithelia. Pharmacological blockade or genetic deletion of PAFr protected sickle cell mice from mortality. We conclude that PAFr plays an important role in hypersusceptibility to pneumococcal infection in sickle cell disease.

Collaboration


Dive into the Geli Gao's collaboration.

Top Co-Authors

Avatar

Elaine Tuomanen

University of Texas System

View shared research outputs
Top Co-Authors

Avatar

Beth Mann

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Carlos J. Orihuela

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jason W. Rosch

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lip Nam Loh

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jack Sublett

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter J. Murray

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jessica Humann

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter Vogel

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge