Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason W. Rosch is active.

Publication


Featured researches published by Jason W. Rosch.


Molecular Microbiology | 2005

The ExPortal: an organelle dedicated to the biogenesis of secreted proteins in Streptococcus pyogenes.

Jason W. Rosch; Michael G. Caparon

The Gram‐positive pathogen Streptococcus pyogenes secretes proteins through the ExPortal, a unique single microdomain of the cellular membrane specialized to contain the Sec translocons. It has been proposed that the ExPortal functions as an organelle to promote the biogenesis of secreted proteins by coordinating interactions between nascent unfolded secretory proteins and membrane‐associated chaperones. In this study we provide evidence to support this model. It was found that HtrA (DegP), a surface anchored accessory factor required for maturation of the secreted SpeB cysteine protease, was localized exclusively to the ExPortal. Furthermore, the ATP synthase β subunit was not localized to the ExPortal, suggesting that retention is likely restricted to a specific subset of exported proteins. Mutations that disrupted the anchoring, but not the protease activity, of HtrA, also altered the maturation kinetics of SpeB demonstrating that localization to the ExPortal was important for HtrA function. These data indicate that the ExPortal provides a mechanism by which Gram‐positive bacteria can coordinate protein secretion and subsequent biogenesis in the absence of a specialized protein‐folding compartment.


Journal of Clinical Investigation | 2010

Statins protect against fulminant pneumococcal infection and cytolysin toxicity in a mouse model of sickle cell disease

Jason W. Rosch; Angela R. Boyd; Ernesto Hinojosa; Tamara I. Pestina; Yunming Hu; Derek A. Persons; Carlos J. Orihuela; Elaine Tuomanen

Sickle cell disease (SCD) is characterized by intravascular hemolysis and inflammation coupled to a 400-fold greater incidence of invasive pneumococcal infection resulting in fulminant, lethal pneumococcal sepsis. Mechanistically, invasive infection is facilitated by a proinflammatory state that enhances receptor-mediated endocytosis of pneumococci into epithelial and endothelial cells. As statins reduce chronic inflammation, in addition to their serum cholesterol-lowering effects, we hypothesized that statin therapy might improve the outcome of pneumococcal infection in SCD. In this study, we tested this hypothesis in an experimental SCD mouse model and found that statin therapy prolonged survival following pneumococcal challenge. The protective effect resulted in part from decreased platelet-activating factor receptor expression on endothelia and epithelia, which led to reduced bacterial invasion. An additional protective effect resulted from inhibition of host cell lysis by pneumococcal cholesterol-dependent cytotoxins (CDCs), including pneumolysin. We conclude therefore that statins may be of prophylactic benefit against invasive pneumococcal disease in patients with SCD and, more broadly, in settings of bacterial pathogenesis driven by receptor-mediated endocytosis and the CDC class of toxins produced by Gram-positive invasive bacteria.


Molecular Microbiology | 2009

Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae

Jason W. Rosch; Geli Gao; Granger Ridout; Yong-Dong Wang; Elaine Tuomanen

The ability of bacteria to sense and respond to both environmental and intracellular metal concentrations plays an important role in pathogenesis. The acquisition of manganese is vital for the virulence of several bacterial species. Although manganese uptake systems have been well studied in bacteria, no manganese efflux system has yet been identified. In this study we have identified a cation diffusion facilitator (CDF) protein (Sp1552) of unknown substrate specificity that functions as a manganese export system in Streptococcus pneumoniae. We designated the gene for this manganese efflux system mntE and found that the mutant strain was highly sensitive to manganese stress. Although the mutant was more resistant to oxidative stress and produced more H2O2 and pili, it had reduced virulence in a murine model of infection, indicating that manganese export plays a role in host pathogenesis. There was a distinct differential transcriptional response to extracellular and intracellular manganese accumulation. Our study indicates that manganese efflux is required for invasive disease and may provide a useful antimicrobial target to devise future therapeutics.


Molecular Microbiology | 2008

Calcium efflux is essential for bacterial survival in the eukaryotic host.

Jason W. Rosch; Jack Sublett; Geli Gao; Yong-Dong Wang; Elaine Tuomanen

In dynamic environments, intracellular homeostasis is maintained by transport systems found in all cells. While bacterial influx systems for essential trace cations are known to contribute to pathogenesis, efflux systems have been characterized mainly in contaminated environmental sites. We describe that the high calcium concentrations in the normal human host were toxic to pneumococci and that bacterial survival in vivo depended on CaxP, the first Ca2+ exporter reported in bacteria. CaxP homologues were found in the eukaryotic sacroplasmic reticulum and in many bacterial genomes. A caxP− mutant accumulated intracellular calcium, a state that was used to reveal signalling networks responsive to changes in intracellular calcium concentration. Chemical inhibition of CaxP was bacteriostatic in physiological calcium concentrations, suggesting a new antibiotic target uncovered under conditions in the eukaryotic host.


Journal of Bacteriology | 2007

Anionic Lipids Enriched at the ExPortal of Streptococcus pyogenes

Jason W. Rosch; Fong Fu Hsu; Michael G. Caparon

The ExPortal of Streptococcus pyogenes is a membrane microdomain dedicated to the secretion and folding of proteins. We investigated the lipid composition of the ExPortal by examining the distribution of anionic membrane phospholipids. Staining with 10-N-nonyl-acridine orange revealed a single microdomain enriched with an anionic phospholipid whose staining characteristics and behavior in a cardiolipin-deficient mutant were characteristic of phosphatidylglycerol. Furthermore, the location of the microdomain corresponded to the site of active protein secretion at the ExPortal. These results indicate that the ExPortal is an asymmetric lipid microdomain, whose enriched content of anionic phospholipids may play an important role in ExPortal organization and protein trafficking.


Infection and Immunity | 2008

Convergence of Regulatory Networks on the Pilus Locus of Streptococcus pneumoniae

Jason W. Rosch; Beth Mann; Justin Thornton; Jack Sublett; Elaine Tuomanen

ABSTRACT The rlrA pilus locus of Streptococcus pneumoniae is an example of a pathogenicity island acquired through genetic recombination. Many acquired genetic elements commandeer preexisting networks of the new organism for transcriptional regulation. We hypothesized that the rlrA locus has integrated into transcriptional regulatory networks controlling expression of virulence factors important in adhesion and invasion. To test this hypothesis, we determined the impact on pilus expression of known regulators controlling adherence, including the two-component systems CbpR/S and HK/RR03 and the transcriptional regulators of divalent cation transporters MerR and PsaR in vitro and in vivo. It was determined that the pilus locus is down-regulated by preexisting networks designed for adhesion and cation transport/response and that its regulation occurs through RlrA. The pilus locus was found to participate in invasion specifically restricted to lung epithelial cells in vitro. While expression of pili had only a small effect on virulence with an intranasal infection model, pili were critically important with an intratracheal infection model. Thus, expression of pili appears to have become integrated into the regulatory circuits for lung-specific invasion by pneumococci.


Blood | 2012

Hydroxyurea therapy of a murine model of sickle cell anemia inhibits the progression of pneumococcal disease by down-modulating E-selectin

Jeffrey D. Lebensburger; Thad A. Howard; Yunming Hu; Tamara I. Pestina; Geli Gao; Melissa Johnson; Stanislav S. Zakharenko; Russell E. Ware; Elaine Tuomanen; Derek A. Persons; Jason W. Rosch

Sickle cell anemia is characterized by chronic hemolysis coupled with extensive vascular inflammation. This inflammatory state also mechanistically promotes a high risk of lethal, invasive pneumococcal infection. Current treatments to reduce vaso-occlusive complications include chronic hydroxyurea therapy to induce fetal hemoglobin. Because hydroxyurea also reduces leukocytosis, an understanding of the impact of this treatment on pneumococcal pathogenesis is needed. Using a sickle cell mouse model of pneumococcal pneumonia and sepsis, administration of hydroxyurea was found to significantly improve survival. Hydroxyurea treatment decreased neutrophil extravasation into the infected lung coincident with significantly reduced levels of E-selectin in serum and on pulmonary epithelia. The protective effect of hydroxyurea was abrogated in mice deficient in E-selectin. The decrease in E-selectin levels was also evident in human sickle cell patients receiving hydroxyurea therapy. These data indicate that in addition to induction of fetal hemoglobin, hydroxyurea attenuates leukocyte-endothelial interactions in sickle cell anemia, resulting in protection against lethal pneumococcal sepsis.


Nature Communications | 2014

Unencapsulated Streptococcus pneumoniae from conjunctivitis encode variant traits and belong to a distinct phylogenetic cluster

Michael D. Valentino; Abigail Manson McGuire; Jason W. Rosch; Paulo J. M. Bispo; Corinna Burnham; Christine M. Sanfilippo; Robert Carter; Michael E. Zegans; Bernard Beall; Ashlee M. Earl; Elaine Tuomanen; Timothy W. Morris; Wolfgang Haas; Michael S. Gilmore

Streptococcus pneumoniae, an inhabitant of the upper respiratory mucosa, causes respiratory and invasive infections as well as conjunctivitis. Strains that lack the capsule, a main virulence factor and the target of current vaccines, are often isolated from conjunctivitis cases. Here we perform a comparative genomic analysis of 271 strains of conjunctivitis-causing S. pneumoniae from 72 postal codes in the US. We find that the vast majority of conjunctivitis strains are members of a distinct cluster of closely related unencapsulated strains. These strains possess divergent forms of pneumococcal virulence factors (such as CbpA and neuraminidases) that are not shared with other unencapsulated nasopharyngeal S. pneumoniae. They also possess putative adhesins that have not been described in encapsulated pneumococci. These findings suggest that the unencapsulated strains capable of causing conjunctivitis utilize a pathogenesis strategy substantially different from that described for S. pneumoniae at other infection sites.


Infection and Immunity | 2008

The Signal Recognition Particle Pathway Is Required for Virulence in Streptococcus pyogenes

Jason W. Rosch; Luis Alberto Vega; John M. Beyer; Ada Lin; Michael G. Caparon

ABSTRACT The signal recognition particle (SRP) pathway is a universally conserved pathway for targeting polypeptides for secretion via the cotranslational pathway. In particular, the SRP pathway is thought to be the main mechanism for targeting polypeptides in gram-positive bacteria, including a number of important human pathogens. Though widely considered to be an essential cellular component, recent advances have indicated this pathway may be dispensable in gram-positive bacteria of the genus Streptococcus under in vitro conditions. However, its importance for the pathogenesis of streptococcal disease is unknown. In this study, we investigated the importance of the SRP pathway for virulence factor secretion in the human pathogen Streptococcus pyogenes. While the SRP pathway was not found to be essential for viability in vitro, SRP mutants demonstrated a medium-specific growth defect that could be rescued by the addition of glucose. We also observed that a distinct subset of virulence factors were dependent upon the SRP pathway for secretion, whereas others were completely independent of this pathway. Significantly, deletion of the SRP pathway resulted in mutants that were highly attenuated in both a zebrafish model of necrotic myositis and a murine subcutaneous ulcer model, highlighting the importance of this pathway in vivo. These studies emphasize the importance of the SRP pathway for the in vivo survival and pathogenesis of S. pyogenes.


Mbio | 2017

A Perfect Storm: Increased Colonization and Failure of Vaccination Leads to Severe Secondary Bacterial Infection in Influenza Virus-Infected Obese Mice

Erik A. Karlsson; Victoria A. Meliopoulos; Nicholas van de Velde; Lee-Ann Van de Velde; Beth Mann; Geli Gao; Jason W. Rosch; Elaine Tuomanen; Jon McCullers; Peter Vogel; Stacey Schultz-Cherry; Terence S. Dermody

ABSTRACT Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae. Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population. IMPORTANCE Worldwide obesity rates have continued to increase. Obesity is associated with increased severity of influenza virus infection; however, very little is known about respiratory coinfections in this expanding, high-risk population. Our studies utilized a coinfection model to show that obesity increases mortality from secondary bacterial infection following influenza virus challenge through a “perfect storm” of host factors that lead to excessive viral and bacterial outgrowth. In addition, we found that vaccination of obese mice against either virus or bacteria failed to confer protection against coinfection, but antibiotic treatment did alleviate mortality. Combined, these results represent an understudied and imminent public health concern in a weighty portion of the global population. IMPORTANCE Worldwide obesity rates have continued to increase. Obesity is associated with increased severity of influenza virus infection; however, very little is known about respiratory coinfections in this expanding, high-risk population. Our studies utilized a coinfection model to show that obesity increases mortality from secondary bacterial infection following influenza virus challenge through a “perfect storm” of host factors that lead to excessive viral and bacterial outgrowth. In addition, we found that vaccination of obese mice against either virus or bacteria failed to confer protection against coinfection, but antibiotic treatment did alleviate mortality. Combined, these results represent an understudied and imminent public health concern in a weighty portion of the global population.

Collaboration


Dive into the Jason W. Rosch's collaboration.

Top Co-Authors

Avatar

Elaine Tuomanen

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael G. Caparon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Geli Gao

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Stacey Schultz-Cherry

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Tamara I. Pestina

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Beth Mann

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Derek A. Persons

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Erik A. Karlsson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jack Sublett

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Luis Alberto Vega

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge