Gemma Ferrer-Mayorga
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gemma Ferrer-Mayorga.
Human Molecular Genetics | 2012
Silvia Alvarez-Diaz; Noelia Valle; Gemma Ferrer-Mayorga; Luis Lombardia; Mercedes Herrera; Orlando Domínguez; Miguel F. Segura; Félix Bonilla; Eva Hernando; Alberto Muñoz
Vitamin D deficiency is associated with the high risk of colon cancer and a variety of other diseases. The active vitamin D metabolite 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) regulates gene transcription via its nuclear receptor (VDR), and posttranscriptional regulatory mechanisms of gene expression have also been proposed. We have identified microRNA-22 (miR-22) and several other miRNA species as 1,25(OH)(2)D(3) targets in human colon cancer cells. Remarkably, miR-22 is induced by 1,25(OH)(2)D(3) in a time-, dose- and VDR-dependent manner. In SW480-ADH and HCT116 cells, miR-22 loss-of-function by transfection of a miR-22 inhibitor suppresses the antiproliferative effect of 1,25(OH)(2)D(3). Additionally, miR-22 inhibition increases cell migration per se and decreases the antimigratory effect of 1,25(OH)(2)D(3) in both cell types. In silico analysis shows a significant overlap between genes suppressed by 1,25(OH)(2)D(3) and miR-22 putative target genes. Consistently, miR-22 inhibition abrogates the 1,25(OH)(2)D(3)-mediated suppression of NELL2, OGN, HNRPH1, RERE and NFAT5 genes. In 39 out of 50 (78%) human colon cancer patients, miR-22 expression was found lower in the tumour than in the matched normal tissue and correlated directly with that of VDR. Our results indicate that miR-22 is induced by 1,25(OH)(2)D(3) in human colon cancer cells and it may contribute to its antitumour action against this neoplasia.
Cancers | 2013
María Jesús Larriba; José Manuel González-Sancho; Antonio Barbáchano; Núria Niell; Gemma Ferrer-Mayorga; Alberto Muñoz
The Wnt/β-catenin signaling pathway is abnormally activated in most colorectal cancers and in a proportion of other neoplasias. This activation initiates or contributes to carcinogenesis by regulating the expression of a large number of genes in tumor cells. The active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits Wnt/β-catenin signaling by several mechanisms at different points along the pathway. Additionally, paracrine actions of 1,25(OH)2D3 on stromal cells may also repress this pathway in neighbouring tumor cells. Here we review the molecular basis for the various mechanisms by which 1,25(OH)2D3 antagonizes Wnt/β-catenin signaling, preferentially in human colon carcinoma cells, and the consequences of this inhibition for the phenotype and proliferation rate. The effect of the vitamin D system on Wnt/β-catenin signaling and tumor growth in animal models will also be commented in detail. Finally, we revise existing data on the relation between vitamin D receptor expression and vitamin D status and the expression of Wnt/β-catenin pathway genes and targets in cancer patients.
Journal of Biological Chemistry | 2013
Carlos Sanz-Garcia; Gemma Ferrer-Mayorga; Águeda González-Rodríguez; Ángela M. Valverde; Antonio Martín-Duce; Juan P. Velasco-Martín; Javier Regadera; Margarita Fernández; Susana Alemany
Background: MAP3K8 (Cot/tpl2) activates MKK1/2-Erk1/2 upon stimulation of receptors from the Toll-like/interleukin-1 receptor superfamily. Results: Cot/tpl2 plays an essential role in acetaminophen-induced liver injury by modulating the generation of inflammatory signals induced by necrotic cells. Conclusion: Sterile inflammatory processes triggered by tissue damage are modulated by Cot/tpl2. Significance: Cot/tpl2 contributes to the development of pathologies associated with inflammation triggered by damage-associated molecular patterns. Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms.
Molecular and Cellular Endocrinology | 2017
Antonio Barbáchano; Asunción Fernández-Barral; Gemma Ferrer-Mayorga; Alba Costales-Carrera; María Jesús Larriba; Alberto Muñoz
The active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) has important regulatory actions in the gut through endocrine and probably also intracrine, autocrine and paracrine mechanisms. By activating the vitamin D receptor (VDR), which is expressed at a high level in the small intestine and colon, 1,25(OH)2D3 regulates numerous genes that control gut physiology and homeostasis. 1,25(OH)2D3 is a major responsible for epithelial barrier function and calcium and phosphate absorption, and the hosts defense against pathogens and the inflammatory response by several types of secretory and immune cells. Moreover, recent data suggest that 1,25(OH)2D3 has a regulatory effect on the gut microbiota and stromal fibroblasts. Many studies have linked vitamin D deficiency to inflammatory bowel diseases (ulcerative colitis and Crohns disease) and to an increased risk of colorectal cancer, and the possible use of VDR agonists to prevent or treat these diseases is receiving increasing interest.
Gut | 2017
Gemma Ferrer-Mayorga; Gonzalo Gómez-López; Antonio Barbáchano; Asunción Fernández-Barral; Cristina Peña; David G. Pisano; Ramón Cantero; Federico Rojo; Alberto Muñoz; María Jesús Larriba
Objective Colorectal cancer (CRC) is a major health concern. Vitamin D deficiency is associated with high CRC incidence and mortality, suggesting a protective effect of vitamin D against this disease. Given the strong influence of tumour stroma on cancer progression, we investigated the potential effects of the active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on CRC stroma. Design Expression of vitamin D receptor (VDR) and two 1,25(OH)2D3 target genes was analysed in 658 patients with CRC with prolonged clinical follow-up. 1,25(OH)2D3 effects on primary cultures of patient-derived colon normal fibroblasts (NFs) and cancer-associated fibroblasts (CAFs) were studied using collagen gel contraction and migration assays and global gene expression analyses. Publicly available data sets (n=877) were used to correlate the 1,25(OH)2D3-associated gene signature in CAFs with CRC outcome. Results High VDR expression in tumour stromal fibroblasts was associated with better overall survival (OS) and progression-free survival in CRC, independently of its expression in carcinoma cells. 1,25(OH)2D3 inhibited the protumoural activation of NFs and CAFs and imposed in CAFs a 1,25(OH)2D3-associated gene signature that correlated with longer OS and disease-free survival in CRC. Furthermore, expression of two genes from the signature, CD82 and S100A4, correlated with stromal VDR expression and clinical outcome in our cohort of patients with CRC. Conclusions 1,25(OH)2D3 has protective effects against CRC through the regulation of stromal fibroblasts. Accordingly, expression of VDR and 1,25(OH)2D3-associated gene signature in stromal fibroblasts predicts a favourable clinical outcome in CRC. Therefore, treatment of patients with CRC with VDR agonists could be explored even in the absence of VDR expression in carcinoma cells.
Journal of Biological Chemistry | 2015
Gemma Ferrer-Mayorga; Silvia Alvarez-Diaz; Noelia Valle; Javier De Las Rivas; Marta Mendes; Rodrigo Barderas; Francesc Canals; Olga Tapia; J. Ignacio Casal; Miguel Lafarga; Alberto Muñoz
Background: Cystatin D is a cysteine protease inhibitor with tumor suppressor action. Results: A proportion of cystatin D protein localizes within the cell nucleus at specific active chromatin sites and regulates gene transcription. Conclusion: Cystatin D is a multifunctional protein with protease inhibitory and gene regulatory activities. Significance: Regulation of cystatin D in colon cancer cells has phenotypic consequences beyond the inhibition of lysosomal and secreted cysteine proteases. Cystatin D is an inhibitor of lysosomal and secreted cysteine proteases. Strikingly, cystatin D has been found to inhibit proliferation, migration, and invasion of colon carcinoma cells indicating tumor suppressor activity that is unrelated to protease inhibition. Here, we demonstrate that a proportion of cystatin D locates within the cell nucleus at specific transcriptionally active chromatin sites. Consistently, transcriptomic analysis show that cystatin D alters gene expression, including that of genes encoding transcription factors such as RUNX1, RUNX2, and MEF2C in HCT116 cells. In concordance with transcriptomic data, quantitative proteomic analysis identified 292 proteins differentially expressed in cystatin D-expressing cells involved in cell adhesion, cytoskeleton, and RNA synthesis and processing. Furthermore, using cytokine arrays we found that cystatin D reduces the secretion of several protumor cytokines such as fibroblast growth factor-4, CX3CL1/fractalkine, neurotrophin 4 oncostatin-M, pulmonary and activation-regulated chemokine/CCL18, and transforming growth factor B3. These results support an unanticipated role of cystatin D in the cell nucleus, controlling the transcription of specific genes involved in crucial cellular functions, which may mediate its protective action in colon cancer.
The Journal of Steroid Biochemistry and Molecular Biology | 2018
Gemma Ferrer-Mayorga; María Jesús Larriba; Piero Crespo; Alberto Muñoz
Colorectal cancer (CRC) is the neoplasia that is most frequently associated with vitamin D deficiency in epidemiological and observational studies in terms of incidence and mortality. Many mechanistic studies show that the active vitamin D metabolite (1α,25-dihydroxyvitamin D3 or calcitriol) inhibits proliferation and promotes epithelial differentiation of human colon carcinoma cell lines that express vitamin D receptor (VDR) via the regulation of a high number of genes. A key action underlining this effect is the multilevel inhibition of the Wnt/β-catenin signaling pathway, whose abnormal activation in colon epithelial cells initiates and promotes CRC. Recently, our group has shown that calcitriol modulates gene expression and inhibits protumoral properties of patient-derived colon cancer-associated fibroblasts (CAFs). Accordingly, high VDR expression in tumor stromal fibroblasts is associated with longer survival of CRC patients. Moreover, many types of immune cells express VDR and are regulated by calcitriol, which probably contributes to its action against CRC. Given the role attributed to the intestinal microbiota in CRC and the finding that it is altered by vitamin D deficiency, an indirect antitumoral effect of calcitriol is also plausible at this level. In summary, calcitriol has an array of potential protective effects against CRC by acting on carcinoma cells, CAFs, immune cells and probably also the gut microbiota.
International Journal of Cancer | 2018
Núria Niell; María Jesús Larriba; Gemma Ferrer-Mayorga; Isabel Sánchez-Pérez; Ramón Cantero; Francisco X. Real; Luis del Peso; Alberto Muñoz; José Manuel González-Sancho
Colorectal cancer results from the malignant transformation of colonic epithelial cells. Stromal fibroblasts are the main component of the tumour microenvironment, and play an important role in the progression of this and other neoplasias. Wnt/β‐catenin signalling is essential for colon homeostasis, but aberrant, constitutive activation of this pathway is a hallmark of colorectal cancer. Here we present the first transcriptomic study on the effect of a Wnt factor on human colonic myofibroblasts. Wnt3A regulates the expression of 1,136 genes, of which 662 are upregulated and 474 are downregulated in CCD‐18Co cells. A set of genes encoding inhibitors of the Wnt/β‐catenin pathway stand out among those induced by Wnt3A, which suggests that there is a feedback inhibitory mechanism. We also show that the PKP2 gene encoding the desmosomal protein Plakophilin‐2 is a novel direct transcriptional target of Wnt/β‐catenin in normal and colon cancer‐associated fibroblasts. PKP2 is induced by β‐catenin/TCF through three binding sites in the gene promoter and one additional binding site located in an enhancer 20 kb upstream from the transcription start site. Moreover, Plakophilin‐2 antagonizes Wnt/β‐catenin transcriptional activity in HEK‐293T cells, which suggests that it may act as an intracellular inhibitor of the Wnt/β‐catenin pathway. Our results demonstrate that stromal fibroblasts respond to canonical Wnt signalling and that Plakophilin‐2 plays a role in the feedback control of this effect suggesting that the response to Wnt factors in the stroma may modulate Wnt activity in the tumour cells.
BIO-PROTOCOL | 2016
Mercedes Herrera; María Jesús Larriba; Gemma Ferrer-Mayorga; Antonio García de Herreros; Félix Bonilla; Josep Baulida; Cristina Peña
Archive | 2016
Gemma Ferrer-Mayorga; Gonzalo Gómez-López; Federico Rojo; Alberto Muñoz Terol; María Jesús Larriba