Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gen Wen is active.

Publication


Featured researches published by Gen Wen.


Circulation | 2007

Catecholamine release-inhibitory peptide catestatin (chromogranin A352-372): Naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension

Fangwen Rao; Gen Wen; Jiaur R. Gayen; Madhusudan Das; Sucheta M. Vaingankar; Brinda K. Rana; Manjula Mahata; Brian Kennedy; Rany M. Salem; Mats Stridsberg; Kenneth Abel; Douglas W. Smith; Eleazar Eskin; Nicholas J. Schork; Bruce A. Hamilton; Michael G. Ziegler; Sushil K. Mahata; Daniel T. O'Connor

Background— Chromogranin A, coreleased with catecholamines by exocytosis, is cleaved to the catecholamine release–inhibitory fragment catestatin. We identified a natural nonsynonymous variant of catestatin, Gly364Ser, that alters human autonomic function and blood pressure. Methods and Results— Gly364Ser heterozygotes and controls underwent physiological and biochemical phenotyping, including catecholamine production, chromogranin A precursor, and its catestatin product. Case-control studies replicated effects of the gene on blood pressure in the population. Gly364Ser displayed diminished inhibition of catecholamine secretion from cultured neurons. Gly/Ser heterozygotes displayed increased baroreceptor slope during upward deflections (by ≈47%) and downward deflections (by ≈44%), increased cardiac parasympathetic index (by ≈2.4-fold), and decreased cardiac sympathetic index (by ≈26%). Renal norepinephrine excretion was diminished by ≈26% and epinephrine excretion by ≈34% in Gly/Ser heterozygotes. The coalescent dated emergence of the variant to ≈70 000 years ago. Gly364Ser was in linkage disequilibrium with 1 major Chromogranin A promoter haplotype, although promoter haplotypes did not predict autonomic phenotypes. The 364Ser variant was associated with lower diastolic blood pressure in 2 independent/confirmatory groups of patients with hypertension; genotype groups differed by ≈5 to 6 mm Hg, and the polymorphism accounted for ≈1.8% of population diastolic blood pressure variance, although a significant gene-by-sex interaction existed, with an enhanced effect in men. Conclusions— The catestatin Gly364Ser variant causes profound changes in human autonomic activity, both parasympathetic and sympathetic, and seems to reduce risk of developing hypertension, especially in men. A model for catestatin action in the baroreceptor center of the nucleus of the tractus solitarius accounts for these actions.


Journal of Hypertension | 2007

C-reactive protein, an 'intermediate phenotype' for inflammation: Human twin studies reveal heritability, association with blood pressure and the metabolic syndrome, and the influence of common polymorphism at catecholaminergic/β-adrenergic pathway loci

Jennifer Wessel; Guillermo Moratorio; Fangwen Rao; Manjula Mahata; Lian Zhang; William Greene; Brinda K. Rana; Brian Kennedy; Srikrishna Khandrika; Pauline Huang; Elizabeth O. Lillie; Pei An Betty Shih; Douglas W. Smith; Gen Wen; Bruce A. Hamilton; Michael G. Ziegler; Joseph L. Witztum; Nicholas J. Schork; Geert W. Schmid-Schönbein; Daniel T. O'Connor

Background C-reactive protein (CRP) both reflects and participates in inflammation, and its circulating concentration marks cardiovascular risk. Here we sought to understand the role of heredity in determining CRP secretion. Methods CRP, as well as multiple facets of the metabolic syndrome, were measured in a series of 229 twins, both monozygotic (MZ) and dizygotic (DZ), to estimate trait heritability (h2). Single nucleotide polymorphism (SNP) genotyping was done at adrenergic pathway loci. Haplotypes were inferred from genotypes by likelihood methods. Association of CRP with hypertension and the metabolic syndrome was studied in a larger series of 732 individuals, including 79 with hypertension. Results MZ and DZ twin variance components indicated substantial h2 for CRP, at ∼56 ± 7% (P < 0.001). CRP was significantly associated (P < 0.05) with multiple features of the metabolic syndrome in twins, including body mass index (BMI), blood pressure (BP), leptin and lipids. In established hypertension, elevated CRP was associated with increased BP, BMI, insulin, HOMA (index of insulin resistance), leptin, triglycerides and norepinephrine. Twin correlations indicated pleiotropy (shared genetic determination) for CRP with BMI (P = 0.0002), leptin (P < 0.001), triglycerides (P = 0.002) and systolic blood pressure (SBP) (P = 0.042). Approximately 9800 genotypes (43 genetic variants at 17 loci) were scored within catecholaminergic pathways: biosynthetic, receptor and signal transduction. Plasma CRP concentration in twins was predicted by polymorphisms at three loci in physiological series within the catecholamine biosynthetic/β-adrenergic pathway: TH (tyrosine hydroxylase), ADRB1 (β1-adrenergic receptor) and ADRB2 (β2-adrenergic receptor). In the TH promoter, common allelic variation accounted for up to ∼6.6% of CRP inter-individual variance. At ADRB1, variation at Gly389Arg predicted ∼2.8% of CRP, while ADRB2 promoter variants T-47C and T-20C also contributed. Particular haplotypes and diplotypes at TH and ADRB1 also predicted CRP, though typically no better than single SNPs alone. Epistasis (gene-by-gene interaction) was demonstrated for particular combinations of TH and ADRB2 alleles, consistent with their actions in a pathway in series. In an illustration of pleiotropy, not only CRP but also plasma triglycerides were predicted by polymorphisms at TH (P = 0.0053) and ADRB2 (P = 0.027). Conclusions CRP secretion is substantially heritable in humans, demonstrating pleiotropy (shared genetic determination) with other features of the metabolic syndrome, such as BMI, triglycerides or BP. Multiple, common genetic variants in the catecholaminergic/β-adrenergic pathway contribute to CRP, and these variants (especially at TH and ADRB2) seem to interact (epistasis) to influence the trait. The results uncover novel pathophysiological links between the adrenergic system and inflammation, and suggest new strategies to probe the role and actions of inflammation within this setting.


American Journal of Human Genetics | 2004

Both Rare and Common Polymorphisms Contribute Functional Variation at CHGA, a Regulator of Catecholamine Physiology

Gen Wen; Sushil K. Mahata; Peter E. Cadman; Manjula Mahata; Sajalendu Ghosh; Nitish R. Mahapatra; Fangwen Rao; Mats Stridsberg; Douglas W. Smith; Payam Mahboubi; Nicholas J. Schork; Daniel T. O’Connor; Bruce A. Hamilton

The chromogranin/secretogranin proteins are costored and coreleased with catecholamines from secretory vesicles in chromaffin cells and noradrenergic neurons. Chromogranin A (CHGA) regulates catecholamine storage and release through intracellular (vesiculogenic) and extracellular (catecholamine release-inhibitory) mechanisms. CHGA is a candidate gene for autonomic dysfunction syndromes, including intermediate phenotypes that contribute to human hypertension. Here, we show a surprising pattern of CHGA variants that alter the expression and function of this gene, both in vivo and in vitro. Functional variants include both common alleles that quantitatively alter gene expression and rare alleles that qualitatively change the encoded product to alter the signaling potency of CHGA-derived catecholamine release-inhibitory catestatin peptides.


Circulation | 2007

Tyrosine Hydroxylase, the Rate-Limiting Enzyme in Catecholamine Biosynthesis Discovery of Common Human Genetic Variants Governing Transcription, Autonomic Activity, and Blood Pressure In Vivo

Fangwen Rao; Lian Zhang; Jennifer Wessel; Kuixing Zhang; Gen Wen; Brian Kennedy; Brinda K. Rana; Madhusudan Das; Juan L. Rodriguez-Flores; Douglas W. Smith; Peter E. Cadman; Rany M. Salem; Sushil K. Mahata; Nicholas J. Schork; Laurent Taupenot; Michael G. Ziegler; Daniel T. O’Connor

Background— Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Does common genetic variation at human TH alter autonomic activity and predispose to cardiovascular disease? We undertook systematic polymorphism discovery at the TH locus and then tested variants for contributions to sympathetic function and blood pressure. Methods and Results— We resequenced 80 ethnically diverse individuals across the TH locus. One hundred seventy-two twin pairs were evaluated for sympathetic traits, including catecholamine production, reflex control of the circulation, and environmental (cold) stress responses. To evaluate hypertension, we genotyped subjects selected from the most extreme diastolic blood pressure percentiles in the population. Human TH promoter haplotype/reporter plasmids were transfected into chromaffin cells. Forty-nine single-nucleotide polymorphisms were discovered, but coding region polymorphism did not account for common phenotypic variation. A block of linkage disequilibrium spanned 4 common variants in the proximal promoter. Catecholamine secretory traits were significantly heritable (h2), as were stress-induced blood pressure changes. In the TH promoter, significant associations were found for urinary catecholamine excretion and for blood pressure response to stress. TH promoter haplotype 2 (TGGG) showed pleiotropy, increasing both norepinephrine excretion and blood pressure during stress. Coalescent simulations suggest that TH haplotype 2 likely arose ≈380 000 years ago. In hypertension, 2 independent case-control studies (1266 subjects with 53% women and 927 subjects with 24% women) replicated the effect of C-824T in the determination of blood pressure. Conclusions— We conclude that human catecholamine secretory traits are heritable, displaying joint genetic determination (pleiotropy) with autonomic activity and finally with blood pressure in the population. Catecholamine secretion is influenced by genetic variation in the adrenergic pathway encoding catecholamine synthesis, especially at the classically rate-limiting step, TH. The results suggest novel pathophysiological links between a key adrenergic locus, catecholamine metabolism, and blood pressure and suggest new strategies to approach the mechanism, diagnosis, and treatment of systemic hypertension.


Hypertension | 2007

Renal Albumin Excretion. Twin Studies Identify Influences of Heredity, Environment, and Adrenergic Pathway Polymorphism

Fangwen Rao; Jennifer Wessel; Gen Wen; Lian Zhang; Brinda K. Rana; Brian Kennedy; Tiffany A. Greenwood; Rany M. Salem; Yuqing Chen; Srikrishna Khandrika; Bruce A. Hamilton; Douglas W. Smith; N.-H. Holstein-Rathlou; Michael G. Ziegler; Nicholas J. Schork; Daniel T. O'Connor

Albumin excretion marks early glomerular injury in hypertension. This study investigated heritability of albumin excretion in twin pairs and its genetic determination by adrenergic pathway polymorphism. Genetic associations used single nucleotide polymorphisms at adrenergic pathway loci spanning catecholamine biosynthesis, storage, catabolism, receptor action, and postreceptor signal transduction. We studied 134 single nucleotide polymorphisms at 46 loci for a total of >51 000 genotypes. Albumin excretion heritability was 45.2±7.4% (P=2×10−7), and the phenotype aggregated significantly with adrenergic, renal, metabolic, and hemodynamic traits. In the adrenergic system, excretions of both norepinephrine and epinephrine correlated with albumin. In the kidney, albumin excretion correlated with glomerular and tubular traits (Na+ and K+ excretion; fractional excretion of Na+ and Li+). Albumin excretion shared genetic determination (genetic covariance) with epinephrine excretion, and environmental determination with glomerular filtration rate and electrolyte intake/excretion. Albumin excretion associated with polymorphisms at multiple points in the adrenergic pathway: catecholamine biosynthesis (tyrosine hydroxylase), catabolism (monoamine oxidase A), storage/release (chromogranin A), receptor target (dopamine D1 receptor), and postreceptor signal transduction (sorting nexin 13 and rho kinase). Epistasis (gene-by-gene interaction) occurred between alleles at rho kinase, tyrosine hydroxylase, chromogranin A, and sorting nexin 13. Dopamine D1 receptor polymorphism showed pleiotropic effects on both albumin and dopamine excretion. These studies establish new roles for heredity and environment in albumin excretion. Urinary excretions of albumin and catecholamines are highly heritable, and their parallel suggests adrenergic mediation of early glomerular permeability alterations. Albumin excretion is influenced by multiple adrenergic pathway genes and is, thus, polygenic. Such functional links between adrenergic activity and glomerular injury suggest novel approaches to its prediction, prevention, diagnosis, and treatment.


Kidney International | 2008

Common genetic variants in the chromogranin A promoter alter autonomic activity and blood pressure

Yuqing Chen; Fangwen Rao; Juan L. Rodriguez-Flores; Nitish R. Mahapatra; Manjula Mahata; Gen Wen; Rany M. Salem; Pei-an Betty Shih; Madhusudan Das; Nicholas J. Schork; Michael G. Ziegler; Bruce A. Hamilton; Sushil K. Mahata; Daniel T. O'Connor

Chromogranin A (CHGA) is stored and released from the same secretory vesicles that contain catecholamines in chromaffin cells and noradrenergic neurons. We had previously identified common genetic variants at the CHGA locus in several human populations. Here we focus on whether inter-individual variants in the promoter region are of physiological significance. A common haplotype, CGATA (Hap-B), blunted the blood pressure response to cold stress and the effect exhibited molecular heterosis with the greatest blood pressure change found in Hap-A/Hap-B heterozygotes. Homozygosity for three minor alleles with peak effects within the haplotype predicted lower stress-induced blood pressure changes. The G-462A variant predicted resting blood pressure in the population with higher pressures occurring in heterozygotes (heterosis). Using cells transfected with CHGA promoter-luciferase reporter constructs, the Hap-B haplotype had decreased luciferase expression compared to the TTGTC (Hap-A) haplotype under both basal conditions and after activation by pre-ganglionic stimuli. The G-462A variant altered a COUP-TF transcriptional control motif. The two alleles in transfected promoters differed in basal activity and in the responses to COUP-II-TF transactivation and to retinoic acid. In vitro findings of molecular heterosis were also noted with the transfected CHGA promoter wherein the diploid combination of the two G-462A alleles gave rise to higher luciferase expression than either allele in isolation. Our results suggest that common genetic variants in the CHGA promoter may regulate heritable changes in blood pressure.


Diabetes, Obesity and Metabolism | 2006

Catecholamine storage vesicles and the metabolic syndrome: The role of the chromogranin A fragment pancreastatin.

Kuixing Zhang; Fangwen Rao; Gen Wen; Rany M. Salem; Sucheta M. Vaingankar; Manjula Mahata; Nitish R. Mahapatra; Elizabeth O. Lillie; Peter E. Cadman; Ryan S. Friese; Bruce A. Hamilton; Vivian Hook; Sushil K. Mahata; Laurent Taupenot; Daniel T. O'Connor

Chromogranins or secretogranins (granins), present in secretory granules of virtually all neuroendocrine cells and neurones, are structurally related proteins encoded by different genetic loci: chromogranins A and B, and secretogranins II through VI. Compelling evidence supports both intracellular and extracellular functions for this protein family. Within the cells of origin, a granulogenic or sorting role in the regulated pathway of hormone or neurotransmitter secretion has been documented, especially for chromogranin A (CHGA). Granins also function as pro‐hormones, giving rise by proteolytic processing to an array of peptide fragments for which diverse autocrine, paracrine, and endocrine activities have been demonstrated. CHGA measurements yield insight into the pathogenesis of such human diseases as essential hypertension, in which deficiency of the catecholamine release‐inhibitory CHGA fragment catestatin may trigger sympathoadrenal overactivity as an aetiologic culprit in the syndrome. The CHGA dysglycaemic fragment pancreastatin is functional in humans in vivo, affecting both carbohydrate (glucose) and lipid (fatty acid) metabolism. Pancreastatin is cleaved from CHGA in hormone storage granules in vivo, and its plasma concentration varies in human disease. The pancreastatin region of CHGA gives rise to three naturally occurring human variants, one of which (Gly297Ser) occurs in the functionally important carboxy‐terminus of the peptide, and substantially increases the peptide’s potency to inhibit cellular glucose uptake. These observations establish a role for pancreastatin in human intermediary metabolism and disease, and suggest that qualitative hereditary alterations in pancreastatin’s primary structure may give rise to interindividual differences in glucose disposition.


Annals of the New York Academy of Sciences | 2008

Adrenergic Polymorphism and the Human Stress Response

Fangwen Rao; Lian Zhang; Jennifer Wessel; Kuixing Zhang; Gen Wen; Brian Kennedy; Brinda K. Rana; Madhusudan Das; Juan L. Rodriguez-Flores; Douglas W. Smith; Peter E. Cadman; Rany M. Salem; Sushil K. Mahata; Nicholas J. Schork; Laurent Taupenot; Michael G. Ziegler; Daniel T. O'Connor

Tyrosine hydroxylase (TH) is the rate‐limiting enzyme in catecholamine biosynthesis. Does common genetic variation at human TH alter autonomic activity and predispose to cardiovascular disease? We undertook systematic polymorphism discovery at the TH locus, and then tested variants for contributions to sympathetic function and blood pressure. We resequenced 80 ethnically diverse individuals across the TH locus. One hundred seventy‐two twin pairs were evaluated for sympathetic traits, including catecholamine production and environmental (cold) stress responses. To evaluate hypertension, we genotyped subjects selected from the most extreme diastolic blood pressure percentiles in the population. Human TH promoter haplotype/reporter plasmids were transfected into chromaffin cells. Forty‐nine single nucleotide polymorphisms (SNPs) and one tetranucleotide repeat were discovered, but coding region polymorphism did not account for common phenotypic variation. A block of linkage disequilibrium spanned four common variants in the proximal promoter. Catecholamine secretory traits were significantly heritable, as were stress‐induced blood pressure changes. In the TH promoter, significant associations were found for urinary catecholamine excretion, as well as blood pressure response to stress. TH promoter haplotype #2 (TGGG) showed pleiotropy, increasing both norepinephrine excretion and blood pressure during stress. In hypertension, a case–control study (1266 subjects, 53% women) established the effect of C‐824T in determination of blood pressure. We conclude that human catecholamine secretory traits are heritable, displaying joint genetic determination (pleiotropy) with autonomic activity and finally with blood pressure in the population. Catecholamine secretion is influenced by genetic variation in the adrenergic pathway encoding catecholamine synthesis, especially at the classically rate‐limiting step, TH. The results suggest novel pathophysiological links between a key adrenergic locus, catecholamine metabolism, and blood pressure, and suggest new strategies to approach the mechanism, diagnosis, and treatment of systemic hypertension.


Hypertension | 2005

Genetic Variation at the Human α2B-Adrenergic Receptor Locus: Role in Blood Pressure Variation and Yohimbine Response

Jason P. Etzel; Brinda K. Rana; Gen Wen; Robert J. Parmer; Nicholas J. Schork; Daniel T. O'Connor; Paul A. Insel

Exaggerated response to &agr;2-adrenergic receptor (&agr;2-AR) blockade by yohimbine in normotensive subjects is an intermediate phenotype that predicts increased risk for development of hypertension. Here, we assessed the 3 &agr;2-AR loci (&agr;2A, &agr;2B, &agr;2C) as candidate genes for their influence on baseline and yohimbine-mediated increase in mean arterial pressure. Because initial results with 173 individuals implicated a possible association of yohimbine response with genetic variation at a site in the &agr;2B-AR gene, but not at sites in the other 2 &agr;2-AR, we sequenced the &agr;2B-AR gene (4.4 kb, including 1.2 kb upstream and 1.9 kb distal to the coding sequence) in those subjects and an additional 81 individuals to search for other &agr;2B-AR variants. We identified 25 polymorphisms, of which 14 are previously unreported, and 2 major haplotypes that differ by the presence/absence of a 9-bp in-frame deletion that encodes Glu301 to Glu303. Frequency differences in haplotypes were observed between blacks and whites but did not predict response to yohimbine. Genotyping of 2 additional white cohorts, including 1269 individuals with extremes in blood pressure selected from >50 000 subjects, also failed to reveal an association of the 2 major &agr;2B-AR haplotypes with differences in blood pressure. Thus, despite considerable polymorphism in &agr;2-AR genes, such variation is not a major determinant of variability in yohimbine response and by inference, in susceptibility to essential hypertension.


Circulation | 2007

Heredity of Endothelin Secretion Human Twin Studies Reveal the Influence of Polymorphism at the Chromogranin A Locus, a Novel Determinant of Endothelial Function

Elizabeth O. Lillie; Manjula Mahata; Srikrishna Khandrika; Fangwen Rao; Richard A. Bundey; Gen Wen; Yuqing Chen; Laurent Taupenot; Douglas W. Smith; Sushil K. Mahata; Michael G. Ziegler; Myles Cockburn; Nicholas J. Schork; Daniel T. O’Connor

Background— Endothelial dysfunction predisposes to vascular injury in association with hypertension. Endothelin (ET-1) is a potent vasoactive peptide that is synthesized and released by the vascular endothelium and is a marker of endothelial function. Chromogranin A (CHGA) regulates the storage and release of catecholamines and may have direct actions on the microvasculature. CHGA, a candidate gene for intermediate phenotypes that contribute to hypertension, shows a pattern of single nucleotide polymorphism variations that alter the expression and function of this gene both in vivo and in vitro. Methods and Results— In a study of twins (n=238 pairs), plasma ET-1 was 58±5% (P<0.0001) heritable. Plasma ET-1 was both correlated and associated with chromogranin fragment levels, and the 2 were influenced by shared genetic determination (pleiotropy [&rgr;G]; for the CHGA precursor, &rgr;G=0.318±0.105; P=0.0032). We therefore hypothesized that variation in the CHGA gene may influence ET-1 secretion. Carriers of the CHGA promoter −988G, −462A, and −89A minor alleles showed significantly higher mean plasma ET-1 than their major allele homozygote counterparts (P=0.02, P=0.006, P=0.03, respectively). Analysis of a linkage disequilibrium block that spans these 3 single nucleotide polymorphisms showed a significant association between the GATACA haplotype and plasma ET-1 (P=0.0075). In cultured human umbilical vein endothelial cells, CHGA caused dose-dependent secretion of ET-1 over a brief (<1 hour) time course at relatively low concentrations of CHGA (10 to 100 nmol/L) with a threshold concentration (10 nmol/L) in the range found circulating in humans in vivo. Conclusions— These results suggest that common, heritable variation in expression of the human CHGA gene influences endothelial ET-1 secretion in vivo, explained by a CHGA stimulus/ET-1 secretion coupling in endothelial cells in vitro. The findings document a previously unsuspected interaction between the sympathochromaffin system and the endothelium and suggest novel genetic and cell biological approaches to the prediction, diagnosis, and mechanism of endothelial dysfunction in human disease.

Collaboration


Dive into the Gen Wen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fangwen Rao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manjula Mahata

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuixing Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge