Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Genta Kakiyama is active.

Publication


Featured researches published by Genta Kakiyama.


Journal of Hepatology | 2013

Modulation of the fecal bile acid profile by gut microbiota in cirrhosis.

Genta Kakiyama; William M. Pandak; Patrick M. Gillevet; Phillip B. Hylemon; Douglas M. Heuman; Kalyani Daita; Hajime Takei; Akina Muto; Hiroshi Nittono; Jason M. Ridlon; Melanie B. White; Nicole A. Noble; Pamela Monteith; Michael Fuchs; Leroy R. Thacker; Masoumeh Sikaroodi; Jasmohan S. Bajaj

BACKGROUND & AIMS The 7α-dehydroxylation of primary bile acids (BAs), chenodeoxycholic (CDCA) and cholic acid (CA) into the secondary BAs, lithocholic (LCA) and deoxycholic acid (DCA), is a key function of the gut microbiota. We aimed at studying the linkage between fecal BAs and gut microbiota in cirrhosis since this could help understand cirrhosis progression. METHODS Fecal microbiota were analyzed by culture-independent multitagged-pyrosequencing, fecal BAs using HPLC and serum BAs using LC-MS in controls, early (Child A) and advanced cirrhotics (Child B/C). A subgroup of early cirrhotics underwent BA and microbiota analysis before/after eight weeks of rifaximin. RESULTS Cross-sectional: 47 cirrhotics (24 advanced) and 14 controls were included. In feces, advanced cirrhotics had the lowest total, secondary, secondary/primary BA ratios, and the highest primary BAs compared to early cirrhotics and controls. Secondary fecal BAs were detectable in all controls but in a significantly lower proportion of cirrhotics (p<0.002). Serum primary BAs were higher in advanced cirrhotics compared to the rest. Cirrhotics, compared to controls, had a higher Enterobacteriaceae (potentially pathogenic) but lower Lachonospiraceae, Ruminococcaceae and Blautia (7α-dehydroxylating bacteria) abundance. CDCA was positively correlated with Enterobacteriaceae (r=0.57, p<0.008) while Ruminococcaceae were positively correlated with DCA (r=0.4, p<0.05). A positive correlation between Ruminococcaceae and DCA/CA (r=0.82, p<0.012) and Blautia with LCA/CDCA (r=0.61, p<0.03) was also seen. Prospective study: post-rifaximin, six early cirrhotics had reduction in Veillonellaceae and in secondary/primary BA ratios. CONCLUSIONS Cirrhosis, especially advanced disease, is associated with a decreased conversion of primary to secondary fecal BAs, which is linked to abundance of key gut microbiome taxa.


Alimentary Pharmacology & Therapeutics | 2014

Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis.

Jasmohan S. Bajaj; Douglas M. Heuman; Phillip B. Hylemon; Arun J. Sanyal; Puneet Puri; Richard K. Sterling; Velimir A. Luketic; Richard T. Stravitz; Mohammed S. Siddiqui; Michael Fuchs; Leroy R. Thacker; James B. Wade; Kalyani Daita; S. Sistrun; Melanie B. White; Nicole A. Noble; C. Thorpe; Genta Kakiyama; William M. Pandak; Masoumeh Sikaroodi; Patrick M. Gillevet

Safety of individual probiotic strains approved under Investigational New Drug (IND) policies in cirrhosis with minimal hepatic encephalopathy (MHE) is not clear.


Atherosclerosis | 2011

Sulfation of 25-hydroxycholesterol by SULT2B1b decreases cellular lipids via the LXR/SREBP-1c signaling pathway in human aortic endothelial cells

Qianming Bai; Leyuan Xu; Genta Kakiyama; Melissa Runge-Morris; Phillip B. Hylemon; Lianhua Yin; William M. Pandak; Shunlin Ren

OBJECTIVE 25-Hydroxycholesterol (25HC) and its sulfated metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), regulate certain aspects of lipid metabolism in opposite ways. Hence, the enzyme for the biosynthesis of 25HC3S, oxysterol sulfotransferase (SULT2B1b), may play a crucial role in regulating lipid metabolism. We evaluate the effect of 25HC sulfation on lipid metabolism by overexpressing the gene encoding SULT2B1b in human aortic endothelial cells (HAECs) in culture. METHODS AND RESULTS The human SULT2B1b gene was successfully overexpressed in HAECs following infection using a recombinant adenovirus. HPLC analysis demonstrated that more than 50% of (3)H-25HC was sulfated in 24h following overexpression of the SULT2B1b gene. In the presence of 25HC, SULT2B1b overexpression significantly decreased mRNA and protein levels of LXR, ABCA1, SREBP-1c, ACC-1, and FAS, which are key regulators of lipid biosynthesis and transport; and subsequently reduced cellular lipid levels. Overexpression of the gene encoding SULT2B1b gave similar results as adding exogenous 25HC3S. However, in the absence of 25HC or in the presence of T0901317, synthetic liver oxysterol receptor (LXR) agonist, SULT2B1b overexpression had no effect on the regulation of key genes involved in lipid metabolism. CONCLUSIONS Our data indicate that sulfation of 25HC by SULT2B1b plays an important role in the maintenance of intracellular lipid homeostasis via the LXR/SREBP-1c signaling pathway in HAECs.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2014

Colonic inflammation and secondary bile acids in alcoholic cirrhosis

Genta Kakiyama; Phillip B. Hylemon; Huiping Zhou; William M. Pandak; Douglas M. Heuman; Dae Joong Kang; Hajime Takei; Hiroshi Nittono; Jason M. Ridlon; Michael Fuchs; Emily C. Gurley; Yun F. Wang; Runping Liu; Arun J. Sanyal; Patrick M. Gillevet; Jasmohan S. Bajaj

Alcohol abuse with/without cirrhosis is associated with an impaired gut barrier and inflammation. Gut microbiota can transform primary bile acids (BA) to secondary BAs, which can adversely impact the gut barrier. The purpose of this study was to define the effect of active alcohol intake on fecal BA levels and ileal and colonic inflammation in cirrhosis. Five age-matched groups {two noncirrhotic (control and drinkers) and three cirrhotic [nondrinkers/nonalcoholics (NAlc), abstinent alcoholic for >3 mo (AbsAlc), currently drinking (CurrAlc)]} were included. Fecal and serum BA analysis, serum endotoxin, and stool microbiota using pyrosequencing were performed. A subgroup of controls, NAlc, and CurrAlc underwent ileal and sigmoid colonic biopsies on which mRNA expression of TNF-α, IL-1β, IL-6, and cyclooxygenase-2 (Cox-2) were performed. One hundred three patients (19 healthy, 6 noncirrhotic drinkers, 10 CurrAlc, 38 AbsAlc, and 30 NAlc, age 56 yr, median MELD: 10.5) were included. Five each of healthy, CurrAlc, and NAlc underwent ileal/colonic biopsies. Endotoxin, serum-conjugated DCA and stool total BAs, and secondary-to-primary BA ratios were highest in current drinkers. On biopsies, a significantly higher mRNA expression of TNF-α, IL-1β, IL-6, and Cox-2 in colon but not ileum was seen in CurrAlc compared with NAlc and controls. Active alcohol use in cirrhosis is associated with a significant increase in the secondary BA formation compared with abstinent alcoholic cirrhotics and nonalcoholic cirrhotics. This increase in secondary BAs is associated with a significant increase in expression of inflammatory cytokines in colonic mucosa but not ileal mucosa, which may contribute to alcohol-induced gut barrier injury.


Journal of Lipid Research | 2014

A simple and accurate HPLC method for fecal bile acid profile in healthy and cirrhotic subjects: validation by GC-MS and LC-MS.

Genta Kakiyama; Akina Muto; Hajime Takei; Hiroshi Nittono; Tsuyoshi Murai; Takao Kurosawa; Alan F. Hofmann; William M. Pandak; Jasmohan S. Bajaj

We have developed a simple and accurate HPLC method for measurement of fecal bile acids using phenacyl derivatives of unconjugated bile acids, and applied it to the measurement of fecal bile acids in cirrhotic patients. The HPLC method has the following steps: 1) lyophilization of the stool sample; 2) reconstitution in buffer and enzymatic deconjugation using cholylglycine hydrolase/sulfatase; 3) incubation with 0.1 N NaOH in 50% isopropanol at 60°C to hydrolyze esterified bile acids; 4) extraction of bile acids from particulate material using 0.1 N NaOH; 5) isolation of deconjugated bile acids by solid phase extraction; 6) formation of phenacyl esters by derivatization using phenacyl bromide; and 7) HPLC separation measuring eluted peaks at 254 nm. The method was validated by showing that results obtained by HPLC agreed with those obtained by LC-MS/MS and GC-MS. We then applied the method to measuring total fecal bile acid (concentration) and bile acid profile in samples from 38 patients with cirrhosis (17 early, 21 advanced) and 10 healthy subjects. Bile acid concentrations were significantly lower in patients with advanced cirrhosis, suggesting impaired bile acid synthesis.


Metabolism-clinical and Experimental | 2012

Oxysterol sulfation by cytosolic sulfotransferase suppresses liver X receptor/sterol regulatory element binding protein–1c signaling pathway and reduces serum and hepatic lipids in mouse models of nonalcoholic fatty liver disease

Qianming Bai; Xin Zhang; Leyuan Xu; Genta Kakiyama; Douglas M. Heuman; Arun J. Sanyal; William M. Pandak; Lianhua Yin; Wen Xie; Shunlin Ren

Cytosolic sulfotransferase (SULT2B1b) catalyzes oxysterol sulfation. 5-Cholesten-3β-25-diol-3-sulfate (25HC3S), one product of this reaction, decreases intracellular lipids in vitro by suppressing liver X receptor/sterol regulatory element binding protein (SREBP)-1c signaling, with regulatory properties opposite to those of its precursor 25-hydroxycholesterol. Upregulation of SULT2B1b may be an effective strategy to treat hyperlipidemia and hepatic steatosis. The objective of the study was to explore the effect and mechanism of oxysterol sulfation by SULT2B1b on lipid metabolism in vivo. C57BL/6 and LDLR(-/-) mice were fed with high-cholesterol diet or high-fat diet for 10 weeks and infected with adenovirus encoding SULT2B1b. SULT2B1b expressions in different tissues were determined by immunohistochemistry and Western blot. Sulfated oxysterols in liver were analyzed by high-pressure liquid chromatography. Serum and hepatic lipid levels were determined by kit reagents and hematoxylin and eosin staining. Gene expressions were determined by real-time reverse transcriptase polymerase chain reaction and Western Blot. Following infection, SULT2B1b was successfully overexpressed in the liver, aorta, and lung tissues, but not in the heart or kidney. SULT2B1b overexpression, combined with administration of 25-hydroxycholesterol, significantly increased the formation of 25HC3S in liver tissue and significantly decreased serum and hepatic lipid levels, including triglycerides, total cholesterol, free cholesterol, and free fatty acids, as compared with controls in both C57BL/6 and LDLR(-/-) mice. Gene expression analysis showed that increases in SULT2B1b expression were accompanied by reduction in key regulators and enzymes involved in lipid metabolism, including liver X receptor α, SREBP-1, SREBP-2, acetyl-CoA carboxylase-1, and fatty acid synthase. These findings support the hypothesis that 25HC3S is an important endogenous regulator of lipid biosynthesis.


Steroids | 2005

Identification of a novel conjugate in human urine: bile acid acyl galactosides

Takaaki Goto; Akihiro Shibata; Daisuke Sasaki; Naoto Suzuki; Takanori Hishinuma; Genta Kakiyama; Takashi Iida; Nariyasu Mano; Junichi Goto

We report a novel conjugate, bile acid acyl galactosides, which exist in the urine of healthy volunteers. To identify the two unknown peaks obtained in urine specimens from healthy subjects, the specimens were subjected to solid phase extraction and then to liquid chromatographic separation. The eluate corresponding to the unknown peaks on the chromatogram was collected. Following alkaline hydrolysis and liquid chromatography (LC)/electrospray ionization (ESI)-mass spectrometric (MS) analysis, cholic acid (CA) and deoxycholic acid (DCA) were identified as liberated bile acids. When a portion of the alkaline hydrolyzate was subjected to a derivatization reaction with 1-phenyl-3-methyl-5-pyrazolone, a derivative of galactose was detected by LC/ESI-MS. Finally, the liquid chromatographic and mass spectrometric properties of these unknown compounds in urine specimens were compared to those of authentic specimens and the structures were confirmed as CA 24-galactoside and DCA 24-galactoside. These results strongly imply that bile acid 24-galactosides, a novel conjugate, were synthesized in the human body.


Steroids | 2013

LC/ESI-MS/MS analysis of urinary 3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid and its amides: new biomarkers for the detection of Niemann-Pick type C disease.

Masamitsu Maekawa; Yasushi Misawa; Ayako Sotoura; Hiroaki Yamaguchi; Masami Togawa; Kousaku Ohno; Hiroshi Nittono; Genta Kakiyama; Takashi Iida; Alan F. Hofmann; Junichi Goto; Miki Shimada; Nariyasu Mano

We developed a sensitive, reliable, and accurate LC/ESI-MS/MS method for measurement of 3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid and its glycine and taurine amides in urine. This atypical C24 bile acid has been reported previously to be present in the urine of patients with Niemann-Pick Type C (NPC) disease. In the method, targeted analytes are concentrated at the front edge of a trapping column, Shim-pack MAYI-C8, which permits elimination of contaminating molecules in the urinary matrix. The trapped analytes are then eluted, separated on a YMC-Pack Pro C18, and quantified with MS/MS using selected reaction monitoring. The method could detect (as amount injected) 2pg of nonamidated 3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid, 2pg of its glycine-amide, and 0.6pg of its taurine-amide, and is linear up to 300pg. The method was then used to measure the three analytes in the urine of NPC patients (N=2), 3β-hydroxysteroid dehydrogenase deficiency patients (N=2), and healthy volunteers (N=8). Measurable concentrations of all three analytes were present in all subjects. The urinary concentration of the sum of all three analytes was four hundred times greater in the 3month NPC patient and 40times greater in the adult patient than that of healthy volunteers. The markedly elevated urinary concentration of 3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid and its amides in NPC patients suggests that these compounds may be valuable biomarkers for detection of NPC disease.


The Journal of Steroid Biochemistry and Molecular Biology | 2012

Cholesterol metabolite, 5-cholesten-3β-25-diol-3-sulfate, promotes hepatic proliferation in mice

Xin Zhang; Qianming Bai; Genta Kakiyama; Leyuan Xu; Jin Kyung Kim; William M. Pandak; Shunlin Ren

UNLABELLED Oxysterols are well known as physiological ligands of liver X receptors (LXRs). Oxysterols, 25-hydroxycholesterol (25HC) and 27-hydroxycholesterol as endogenous ligands of LXRs, suppress cell proliferation via LXRs signaling pathway. Recent reports have shown that sulfated oxysterol, 5-cholesten-3β-25-diol-3-sulfate (25HC3S) as LXRs antagonist, plays an opposite direction to oxysterols in lipid biosynthesis. The present report was to explore the effect and mechanism of 25HC3S on hepatic proliferation in vivo. Following administration, 25HC3S had a 48 h half life in the circulation and widely distributed in mouse tissues. Profiler™ PCR array and RTqPCR analysis showed that either exogenous or endogenous 25HC3S generated by overexpression of oxysterol sulfotransferase (SULT2B1b) plus administration of 25HC significantly up-regulated the proliferation gene expression of Wt1, Pcna, cMyc, cyclin A, FoxM1b, and CDC25b in a dose-dependent manner in liver while substantially down-regulating the expression of cell cycle arrest gene Chek2 and apoptotic gene Apaf1. Either exogenous or endogenous administration of 25HC3S significantly induced hepatic DNA replication as measured by immunostaining of the PCNA labeling index and was associated with reduction in expression of LXR response genes, such as ABCA1 and SREBP-1c. Synthetic LXR agonist T0901317 effectively blocked 25HC3S-induced hepatic proliferation. CONCLUSIONS 25HC3S may be a potent regulator of hepatocyte proliferation and oxysterol sulfation may represent a novel regulatory pathway in liver proliferation via inactivating LXR signaling.


Clinical and translational gastroenterology | 2016

Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition.

Dae J. Kang; Genta Kakiyama; Naga S. Betrapally; Jeremy Herzog; Hiroshi Nittono; Phillip B. Hylemon; Huiping Zhou; Ian M. Carroll; Jing Yang; Patrick M. Gillevet; Chunhua Jiao; Hajime Takei; William M. Pandak; Takashi Iida; Douglas M. Heuman; Sili Fan; Oliver Fiehn; Takao Kurosawa; Masoumeh Sikaroodi; Ryan B. Sartor; Jasmohan S. Bajaj

Objectives:Rifaximin has clinical benefits in minimal hepatic encephalopathy (MHE) but the mechanism of action is unclear. The antibiotic-dependent and -independent effects of rifaximin need to be elucidated in the setting of MHE-associated microbiota. To assess the action of rifaximin on intestinal barrier, inflammatory milieu and ammonia generation independent of microbiota using rifaximin.Methods:Four germ-free (GF) mice groups were used (1) GF, (2) GF+rifaximin, (3) Humanized with stools from an MHE patient, and (4) Humanized+rifaximin. Mice were followed for 30 days while rifaximin was administered in chow at 100 mg/kg from days 16–30. We tested for ammonia generation (small-intestinal glutaminase, serum ammonia, and cecal glutamine/amino-acid moieties), systemic inflammation (serum IL-1β, IL-6), intestinal barrier (FITC-dextran, large-/small-intestinal expression of IL-1β, IL-6, MCP-1, e-cadherin and zonulin) along with microbiota composition (colonic and fecal multi-tagged sequencing) and function (endotoxemia, fecal bile acid deconjugation and de-hydroxylation).Results:All mice survived until day 30. In the GF setting, rifaximin decreased intestinal ammonia generation (lower serum ammonia, increased small-intestinal glutaminase, and cecal glutamine content) without changing inflammation or intestinal barrier function. Humanized microbiota increased systemic/intestinal inflammation and endotoxemia without hyperammonemia. Rifaximin therapy significantly ameliorated these inflammatory cytokines. Rifaximin also favorably impacted microbiota function (reduced endotoxin and decreased deconjugation and formation of potentially toxic secondary bile acids), but not microbial composition in humanized mice.Conclusions:Rifaximin beneficially alters intestinal ammonia generation by regulating intestinal glutaminase expression independent of gut microbiota. MHE-associated fecal colonization results in intestinal and systemic inflammation in GF mice, which is also ameliorated with rifaximin.

Collaboration


Dive into the Genta Kakiyama's collaboration.

Top Co-Authors

Avatar

William M. Pandak

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasmohan S. Bajaj

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas M. Heuman

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Phillip B. Hylemon

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge