Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey G. Wilson is active.

Publication


Featured researches published by Geoffrey G. Wilson.


Nucleic Acids Research | 1994

The DNA (cytosine-5) methyltransferases

Sanjay Kumar; Xiaodong Cheng; Saulius Klimašauskas; Sha Mi; Janos Posfai; Richard J. Roberts; Geoffrey G. Wilson

The m5C-MTases form a closely-knit family of enzymes in which common amino acid sequence motifs almost certainly translate into common structural and functional elements. These common elements are located predominantly in a single structural domain that performs the chemistry of the reaction. Sequence-specific DNA recognition is accomplished by a separate domain that contains recognition elements not seen in other structures. This, combined with the novel and unexpected mechanistic feature of trapping a base out of the DNA helix, makes the m5C-MTases an intriguing class of enzymes for further study. The reaction pathway has suddenly become more complicated because of the base-flipping and much remains to be learned about the DNA recognition elements in the family members for which structural information is not yet available.


The EMBO Journal | 1998

Crystal structure of restriction endonuclease BglI bound to its interrupted DNA recognition sequence

Matthew Newman; Keith D. Lunnen; Geoffrey G. Wilson; John Greci; Ira Schildkraut; Simon E. V. Phillips

The crystal structure of the type II restriction endonuclease BglI bound to DNA containing its specific recognition sequence has been determined at 2.2 Å resolution. This is the first structure of a restriction endonuclease that recognizes and cleaves an interrupted DNA sequence, producing 3′ overhanging ends. BglI is a homodimer that binds its specific DNA sequence with the minor groove facing the protein. Parts of the enzyme reach into both the major and minor grooves to contact the edges of the bases within the recognition half‐sites. The arrangement of active site residues is strikingly similar to other restriction endonucleases, but the co‐ordination of two calcium ions at the active site gives new insight into the catalytic mechanism. Surprisingly, the core of a BglI subunit displays a striking similarity to subunits of EcoRV and PvuII, but the dimer structure is dramatically different. The BglI–DNA complex demonstrates, for the first time, that a conserved subunit fold can dimerize in more than one way, resulting in different DNA cleavage patterns.


Gene | 1988

Cloning the MspI restriction and modification genes

Geoffrey G. Wilson

We have cloned into Escherichia coli the genes for 38 type-II bacterial modification methyltransferases. The clones were isolated by selecting in vitro for protectively modified recombinants. Most of the clones modify their DNA fully but a substantial number modify only partially. In approximately one-half of the clones, the genes for the corresponding endonucleases are also present. Some of these clones restrict infecting phages and others do not. Clones carrying endonuclease genes but lacking methyltransferase genes have been found, in several instances, to be viable.


Nucleic Acids Research | 2014

Highlights of the DNA cutters: a short history of the restriction enzymes

Wil A. M. Loenen; David T. F. Dryden; Elisabeth A. Raleigh; Geoffrey G. Wilson; Noreen E. Murray

In the early 1950’s, ‘host-controlled variation in bacterial viruses’ was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.


Nucleic Acids Research | 2014

Type II restriction endonucleases--a historical perspective and more.

Alfred Pingoud; Geoffrey G. Wilson; Wolfgang Wende

This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss ‘Type II’ REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.


Nucleic Acids Research | 2014

Type I restriction enzymes and their relatives

Wil A. M. Loenen; David T. F. Dryden; Elisabeth A. Raleigh; Geoffrey G. Wilson

Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction–modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.


Nucleic Acids Research | 2010

A unique family of Mrr-like modification-dependent restriction endonucleases

Yu Zheng; Devora Cohen-Karni; Derrick Xu; Hang Gyeong Chin; Geoffrey G. Wilson; Sriharsa Pradhan; Richard J. Roberts

Mrr superfamily of homologous genes in microbial genomes restricts modified DNA in vivo. However, their biochemical properties in vitro have remained obscure. Here, we report the experimental characterization of MspJI, a remote homolog of Escherichia coli’s Mrr and show it is a DNA modification-dependent restriction endonuclease. Our results suggest MspJI recognizes mCNNR (R = G/A) sites and cleaves DNA at fixed distances (N12/N16) away from the modified cytosine at the 3′ side (or N9/N13 from R). Besides 5-methylcytosine, MspJI also recognizes 5-hydroxymethylcytosine but is blocked by 5-glucosylhydroxymethylcytosine. Several other close homologs of MspJI show similar modification-dependent endonuclease activity and display substrate preferences different from MspJI. A unique feature of these modification-dependent enzymes is that they are able to extract small DNA fragments containing modified sites on genomic DNA, for example ∼32 bp around symmetrically methylated CG sites and ∼31 bp around methylated CNG sites. The digested fragments can be directly selected for high-throughput sequencing to map the location of the modification on the genomic DNA. The MspJI enzyme family, with their different recognition specificities and cleavage properties, provides a basis on which many future methods can build to decode the epigenomes of different organisms.


Nucleic Acids Research | 2011

Comparative characterization of the PvuRts1I family of restriction enzymes and their application in mapping genomic 5-hydroxymethylcytosine

Hua Wang; Shengxi Guan; Aine Quimby; Devora Cohen-Karni; Sriharsa Pradhan; Geoffrey G. Wilson; Richard J. Roberts; Zhenyu Zhu; Yu Zheng

PvuRts1I is a modification-dependent restriction endonuclease that recognizes 5-hydroxymethylcytosine (5hmC) as well as 5-glucosylhydroxymethylcytosine (5ghmC) in double-stranded DNA. Using PvuRts1I as the founding member, we define a family of homologous proteins with similar DNA modification-dependent recognition properties. At the sequence level, these proteins share a few uniquely conserved features. We show that these enzymes introduce a double-stranded cleavage at the 3′-side away from the recognized modified cytosine. The distances between the cleavage sites and the modified cytosine are fixed within a narrow range, with the majority being 11–13 nt away in the top strand and 9–10 nt away in the bottom strand. The recognition sites of these enzymes generally require two cytosines on opposite strand around the cleavage sites, i.e. 5′-CN11–13↓N9–10G-3′/3′-GN9–10↓N11–13C-5′, with at least one cytosine being modified for efficient cleavage. As one potential application for these enzymes is to provide useful tools for selectively mapping 5hmC sites, we have compared the relative selectivity of a few PvuRts1I family members towards different forms of modified cytosines. Our results show that the inherently different relative selectivity towards modified cytosines can have practical implications for their application. By using AbaSDFI, a PvuRts1I homolog with the highest relative selectivity towards 5ghmC, to analyze rat brain DNA, we show it is feasible to map genomic 5hmC sites close to base resolution. Our study offers unique tools for determining more accurate hydroxymethylomes in mammalian cells.


Trends in Genetics | 1988

Type II restriction—modification systems

Geoffrey G. Wilson

Abstract The genes for increasing numbers of type II restriction and modification enzymes are being cloned and characterized. The gene arrangements and enzyme sequences are quite diverse in spite of the biochemical similarities of the enzymes.


Gene | 1988

Cloned restriction-modification systems — a review

Geoffrey G. Wilson

The genes for numerous restriction endonucleases and modification methylases have been cloned into Escherichia coli. A summary is given for the clones isolated so far (115 entries) and of the procedures used to obtain them.

Collaboration


Dive into the Geoffrey G. Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge