Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuang-yong Xu is active.

Publication


Featured researches published by Shuang-yong Xu.


PLOS Biology | 2013

The COMBREX Project: Design, Methodology, and Initial Results

Brian P. Anton; Yi-Chien Chang; Peter Brown; Han-Pil Choi; Lina L. Faller; Jyotsna Guleria; Zhenjun Hu; Niels Klitgord; Ami Levy-Moonshine; Almaz Maksad; Varun Mazumdar; Mark McGettrick; Lais Osmani; Revonda Pokrzywa; John Rachlin; Rajeswari Swaminathan; Benjamin Allen; Genevieve Housman; Caitlin Monahan; Krista Rochussen; Kevin Tao; Ashok S. Bhagwat; Steven E. Brenner; Linda Columbus; Valérie de Crécy-Lagard; Donald J. Ferguson; Alexey Fomenkov; Giovanni Gadda; Richard D. Morgan; Andrei L. Osterman

Experimental data exists for only a vanishingly small fraction of sequenced microbial genes. This community page discusses the progress made by the COMBREX project to address this important issue using both computational and experimental resources.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The MspJI family of modification-dependent restriction endonucleases for epigenetic studies

Devora Cohen-Karni; Derrick Xu; Lynne Apone; Alexey Fomenkov; Zhiyi Sun; Paul J. Davis; Shannon R. M. Kinney; Megumu Yamada-Mabuchi; Shuang-yong Xu; Theodore B. Davis; Sriharsa Pradhan; Richard J. Roberts; Yu Zheng

MspJI is a novel modification-dependent restriction endonuclease that cleaves at a fixed distance away from the modification site. Here, we present the biochemical characterization of several MspJI homologs, including FspEI, LpnPI, AspBHI, RlaI, and SgrTI. All of the enzymes specifically recognize cytosine C5 modification (methylation or hydroxymethylation) in DNA and cleave at a constant distance (N12/N16) away from the modified cytosine. Each displays its own sequence context preference, favoring different nucleotides flanking the modified cytosine. By cleaving on both sides of fully modified CpG sites, they allow the extraction of 32-base long fragments around the modified sites from the genomic DNA. These enzymes provide powerful tools for direct interrogation of the epigenome. For example, we show that RlaI, an enzyme that prefers mCWG but not mCpG sites, generates digestion patterns that differ between plant and mammalian genomic DNA, highlighting the difference between their epigenomic patterns. In addition, we demonstrate that deep sequencing of the digested DNA fragments generated from these enzymes provides a feasible method to map the modified sites in the genome. Altogether, the MspJI family of enzymes represent appealing tools of choice for method development in DNA epigenetic studies.


Journal of Molecular Biology | 2003

PspGI, a Type II Restriction Endonuclease from the Extreme Thermophile Pyrococcus sp.: Structural and Functional Studies to Investigate an Evolutionary Relationship with Several Mesophilic Restriction Enzymes

Vera Pingoud; Charlotte Conzelmann; Steffen Kinzebach; Anna Sudina; Valerie Metelev; E. A. Kubareva; Janusz M. Bujnicki; Rudi Lurz; Gerhild Lüder; Shuang-yong Xu; Alfred Pingoud

We present here the first detailed biochemical analysis of an archaeal restriction enzyme. PspGI shows sequence similarity to SsoII, EcoRII, NgoMIV and Cfr10I, which recognize related DNA sequences. We demonstrate here that PspGI, like SsoII and unlike EcoRII or NgoMIV and Cfr10I, interacts with and cleaves DNA as a homodimer and is not stimulated by simultaneous binding to two recognition sites. PspGI and SsoII differ in their basic biochemical properties, viz. stability against chemical denaturation and proteolytic digestion, DNA binding and the pH, MgCl(2) and salt-dependence of their DNA cleavage activity. In contrast, the results of mutational analyses and cross-link experiments show that PspGI and SsoII have a very similar DNA binding site and catalytic center as NgoMIV and Cfr10I (whose crystal structures are known), and presumably also as EcoRII, in spite of the fact that these enzymes, which all recognize variants of the sequence -/CC-GG- (/ denotes the site of cleavage), are representatives of different subgroups of type II restriction endonucleases. A sequence comparison of all known restriction endonuclease sequences, furthermore, suggests that several enzymes recognizing other DNA sequences also share amino acid sequence similarities with PspGI, SsoII and EcoRII in the region of the presumptive active site. These results are discussed in an evolutionary context.


Structure | 2001

Restriction Enzyme BsoBI-DNA Complex: A Tunnel for Recognition of Degenerate DNA Sequences and Potential Histidine Catalysis

Mark J. van der Woerd; John J. Pelletier; Shuang-yong Xu; Alan M. Friedman

BACKGROUND Restriction endonucleases form a diverse family of proteins with substantial variation in sequence, structure, and interaction with recognition site DNA. BsoBI is a thermophilic restriction endonuclease that exhibits both base-specific and degenerate recognition within the sequence CPyCGPuG. RESULTS The structure of BsoBI complexed to cognate DNA has been determined to 1.7 A resolution, revealing several unprecedented features. Each BsoBI monomer is formed by inserting a helical domain into an expanded EcoRI-type catalytic domain. DNA is completely encircled by a BsoBI dimer. Recognition sequence DNA lies within a 20 A long tunnel of protein that excludes bulk solvent. Interactions with the specific bases are made in both grooves through direct and water-mediated hydrogen bonding. Interaction with the degenerate position is mediated by a purine-specific hydrogen bond to N7, ensuring specificity, and water-mediated H bonding to the purine N6/O6 and pyrimidine N4/O4, allowing degeneracy. In addition to the conserved active site residues of the DX(n)(E/D)ZK restriction enzyme motif, His253 is positioned to act as a general base. CONCLUSIONS A catalytic mechanism employing His253 and two metal ions is proposed. If confirmed, this would be the first example of histidine-mediated catalysis in a restriction endonuclease. The structure also provides two novel examples of the role of water in protein-DNA interaction. Degenerate recognition may be mediated by employing water as a hydrogen bond donor or acceptor. The structure of DNA in the tunnel may also be influenced by the absence of bulk solvent.


Nucleic Acids Research | 2007

Discovery of natural nicking endonucleases Nb.BsrDI and Nb.BtsI and engineering of top-strand nicking variants from BsrDI and BtsI.

Shuang-yong Xu; Zhenyu Zhu; Penghua Zhang; Siu-Hong Chan; James C. Samuelson; Jian-ping Xiao; Debra Ingalls; Geoffrey G. Wilson

BsrDI and BtsI restriction endonucleases recognize and cleave double-strand DNA at the sequences GCAATG (2/0) and GCAGTG (2/0), respectively. We have purified and partially characterized these two enzymes, and analyzed the genes that encode them. BsrDI and BtsI are unusual in two respects: each cleaves DNA as a heterodimer of one large subunit (B subunit) and one small subunit (A subunit); and, in the absence of their small subunits, the large subunits behave as sequence-specific DNA nicking enzymes and only nick the bottom strand of the sequences at these respective positions: GCAATG (−/0) and GCAGTG (−/0). We refer to the single subunit, the bottom-strand nicking forms as ‘hemidimers’. Amino acid sequence comparisons reveal that BsrDI and BtsI belong to a family of restriction enzymes that possess two catalytic sites: a canonical PD-Xn-EXK and a second non-canonical PD-Xn-E-X12-QR. Interestingly, the other family members, which include BsrI (ACTGG 1/−1) and BsmI/Mva1269I (GAATGC 1/−1) are single polypeptide chains, i.e. monomers, rather than heterodimers. In BsrDI and BtsI, the two catalytic sites are found in two separate subunits. Site-directed mutagenesis confirmed that the canonical catalytic site located at the N-terminus of the large subunit is responsible for the bottom-strand cleavage, whereas the non-canonical catalytic site located in the small subunit is responsible for hydrolysis of the top strand. Top-strand specific nicking variants, Nt.BsrDI and Nt.BtsI, were successfully engineered by combining the catalytic-deficient B subunit with wild-type A subunit.


Nucleic Acids Research | 2006

Engineering a rare-cutting restriction enzyme: genetic screening and selection of NotI variants.

James C. Samuelson; Richard D. Morgan; Jack S. Benner; Toby E. Claus; Stephanie L. Packard; Shuang-yong Xu

Restriction endonucleases (REases) with 8-base specificity are rare specimens in nature. NotI from Nocardia otitidis-caviarum (recognition sequence 5′-GCGGCCGC-3′) has been cloned, thus allowing for mutagenesis and screening for enzymes with altered 8-base recognition and cleavage activity. Variants possessing altered specificity have been isolated by the application of two genetic methods. In step 1, variant E156K was isolated by its ability to induce DNA-damage in an indicator strain expressing M.EagI (to protect 5′-NCGGCCGN-3′ sites). In step 2, the E156K allele was mutagenized with the objective of increasing enzyme activity towards the alternative substrate site: 5′-GCTGCCGC-3′. In this procedure, clones of interest were selected by their ability to eliminate a conditionally toxic substrate vector and induce the SOS response. Thus, specific DNA cleavage was linked to cell survival. The secondary substitutions M91V, F157C and V348M were each found to have a positive effect on specific activity when paired with E156K. For example, variant M91V/E156K cleaves 5′-GCTGCCGC-3′ with a specific activity of 8.2 × 104 U/mg, a 32-fold increase over variant E156K. A comprehensive analysis indicates that the cleavage specificity of M91V/E156K is relaxed to a small set of 8 bp substrates while retaining activity towards the NotI sequence.


Nucleic Acids Research | 2007

Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities

Siu-hong Chan; Yongming Bao; Ewa Ciszak; Sophie Laget; Shuang-yong Xu

Creating endonucleases with novel sequence specificities provides more possibilities to manipulate DNA. We have created a chimeric endonuclease (CH-endonuclease) consisting of the DNA cleavage domain of BmrI restriction endonuclease and C.BclI, a controller protein of the BclI restriction-modification system. The purified chimeric endonuclease, BmrI198-C.BclI, cleaves DNA at specific sites in the vicinity of the recognition sequence of C.BclI. Double-strand (ds) breaks were observed at two sites: 8 bp upstream and 18 bp within the C-box sequence. Using DNA substrates with deletions of C-box sequence, we show that the chimeric endonuclease requires the 5′ half of the C box only for specific cleavage. A schematic model is proposed for the mode of protein–DNA binding and DNA cleavage. The present study demonstrates that the BmrI cleavage domain can be used to create combinatorial endonucleases that cleave DNA at specific sequences dictated by the DNA-binding partner. The resulting endonucleases will be useful in vitro and in vivo to create ds breaks at specific sites and generate deletions.


PLOS ONE | 2010

Cofactor requirement of HpyAV restriction endonuclease.

Siu-Hong Chan; Lars Opitz; Lauren Higgins; Diana O'loane; Shuang-yong Xu

Background Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M) systems in microorganisms. Principal Findings We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain 26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg++. The special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity. Conclusions/Significance Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms.


Molecular Genetics and Genomics | 1998

Cloning and expression of the Apa LI, Nsp I, Nsp HI, Sac I, Sca I, and Sap I restriction-modification systems in Escherichia coli

Shuang-yong Xu; J.-p. Xiao; L. Ettwiller; M. Holden; J. Aliotta; C. L. Poh; M. Dalton; D. P. Robinson; T. R. Petronzio; Laurie S. Moran; M. Ganatra; J. Ware; Barton E. Slatko; Jack S. Benner

Abstract The genes encoding the ApaLI (5′-G^TGCAC-3′), NspI (5′-RCATG^Y-3′), NspHI (5′-RCATG^Y-3′), SacI (5′-GAGCT^C-3′), SapI (5′-GCTCTTCN1^-3′, 5′-^N4GAAGAGC-3′) and ScaI (5′-AGT^ACT-3′) restriction-modification systems have been cloned in E.␣coli. Amino acid sequence comparison of M.ApaLI, M.NspI, M.NspHI, and M.SacI with known methylases indicated that they contain the ten conserved motifs characteristic of C5 cytosine methylases. NspI and NspHI restriction-modification systems are highly homologous in amino acid sequence. The C-termini of the NspI and NlaIII (5′-CATG-3′) restriction endonucleases share significant similarity. 5mC modification of the internal C in a SacI site renders it resistant to SacI digestion. External 5mC modification of a SacI site has no effect on SacI digestion. N4mC modification of the second base in the sequence 5′-GCTCTTC-3′ blocks SapI digestion. N4mC modification of the other cytosines in the SapI site does not affect SapI digestion. N4mC modification of ScaI site blocks ScaI digetion. A DNA invertase homolog was found adjacent to the ApaLI restriction-modification system. A DNA transposase subunit homolog was found upstream of the SapI restriction endonuclease gene.


Nucleic Acids Research | 2013

Natural zinc ribbon HNH endonucleases and engineered zinc finger nicking endonuclease

Shuang-yong Xu; Yogesh K. Gupta

Many bacteriophage and prophage genomes encode an HNH endonuclease (HNHE) next to their cohesive end site and terminase genes. The HNH catalytic domain contains the conserved catalytic residues His-Asn-His and a zinc-binding site [CxxC]2. An additional zinc ribbon (ZR) domain with one to two zinc-binding sites ([CxxxxC], [CxxxxH], [CxxxC], [HxxxH], [CxxC] or [CxxH]) is frequently found at the N-terminus or C-terminus of the HNHE or a ZR domain protein (ZRP) located adjacent to the HNHE. We expressed and purified 10 such HNHEs and characterized their cleavage sites. These HNHEs are site-specific and strand-specific nicking endonucleases (NEase or nickase) with 3- to 7-bp specificities. A minimal HNH nicking domain of 76 amino acid residues was identified from Bacillus phage γ HNHE and subsequently fused to a zinc finger protein to generate a chimeric NEase with a new specificity (12–13 bp). The identification of a large pool of previously unknown natural NEases and engineered NEases provides more ‘tools’ for DNA manipulation and molecular diagnostics. The small modular HNH nicking domain can be used to generate rare NEases applicable to targeted genome editing. In addition, the engineered ZF nickase is useful for evaluation of off-target sites in vitro before performing cell-based gene modification.

Collaboration


Dive into the Shuang-yong Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aneel K. Aggarwal

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge