Geoffrey Guest
Norwegian University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geoffrey Guest.
Gcb Bioenergy | 2012
Francesco Cherubini; Geoffrey Guest; Anders Hammer Strømman
In life cycle assessment (LCA), the same characterization factors are conventionally applied irrespective of when the emissions occur (the same importance is given to emissions in the past, present, and future). When the assessment is constrained by fixed timeframes, the appropriateness of this paradigm is questioned and the temporal distribution of emissions becomes of relevance. One typical example is the accounting for biogenic CO2 emissions and removals. This article proposes a methodology for assessing the climate impact of time‐distributed CO2 fluxes using probability distributions. Three selected wood applications, such as fuel, nonstructural panels, and housing construction materials are assessed. In all the cases, CO2 sequestration in growing trees is modeled with an appropriate forest growth function, whereas CO2 emissions from wood oxidation are modeled with different probability distributions, such as the delta function, the uniform distribution, the exponential distribution, and the chi‐square distribution. The combination of these CO2 fluxes with the global carbon cycle provides the respective changes caused in CO2 atmospheric concentration and hence in the radiative forcing. The latter is then used as basis for climate impact metrics. Results demonstrate the utility of using emission and removal functions rather than single pulses, which generally overestimate the climate impact of CO2 emissions, especially in presence of short time horizons. Characterization factors for biogenic CO2 are provided for selected combinations of biomass species, rotation periods, and probability distributions. The time discrepancy between biogenic CO2 emissions and capture through regrowth results in a certain climate impact, even for a system that is carbon neutral over time. For the oxidation rate of wooden products, the use of a chi‐square distribution appears the most reliable and appropriate option under a methodological perspective. The feasibility of its adoption in LCA and emission accounting from harvested wood products deserves further scientific considerations.
Journal of Industrial Ecology | 2011
Geoffrey Guest; Ryan M. Bright; Francesco Cherubini; Ottar Michelsen; Anders Hammer Strømman
Norway, like many countries, has realized the need to extensively plan its renewable energy future sooner rather than later. Combined heat and power (CHP) through gasification of forest residues is one technology that is expected to aid Norway in achieving a desired doubling of bioenergy production by 2020. To assess the environmental impacts to determine the most suitable CHP size, we performed a unit process‐based attributional life cycle assessment (LCA), in which we compared three scales of CHP over ten environmental impact categories—micro (0.1 megawatts electricity [MWe]), small (1 MWe), and medium (50 MWe) scale. The functional units used were 1 megajoule (MJ) of electricity and 1 MJ of district heating delivered to the end user (two functional units), and therefore, the environmental impacts from distribution of electricity and hot water to the consumer were also considered. This study focuses on a regional perspective situated in middle‐Norways Nord‐ and Sor‐Trondelag counties. Overall, the unit‐based environmental impacts between the scales of CHP were quite mixed and within the same magnitude. The results indicated that energy distribution from CHP plant to end user creates from less than 1% to nearly 90% of the total system impacts, depending on impact category and energy product. Also, an optimal small‐scale CHP plant may be the best environmental option. The CHP systems had a global warming potential ranging from 2.4 to 2.8 grams of carbon dioxide equivalent per megajoule of thermal (g CO2‐eq/MJth) district heating and from 8.8 to 10.5 grams carbon dioxide equivalent per megajoule of electricity (g CO2‐eq/MJel) to the end user.
Journal of Industrial Ecology | 2013
Geoffrey Guest; Francesco Cherubini; Anders Hammer Strømman
There is growing interest in understanding how storage or delayed emission of carbon in products based on bioresources might mitigate climate change, and how such activities could be credited. In this research we extend the recently introduced approach that integrates biogenic carbon dioxide (CO) fluxes with the global carbon cycle (using biogenic global warming potential [GWP]) to consider the storage period of harvested biomass in the anthroposphere, with subsequent oxidation. We then examine how this affects the climate impact from a bioenergy resource. This approach is compared to several recent methods designed to address the same problem. Using both a 100‐ and a 500‐year fixed time horizon we calculate the GWP factor for every combination of rotational and anthropogenic storage periods between 0 and 100 years. The resulting GWP factors range from −0.99 (1‐year rotation and 100‐year storage) to +0.44 (100‐year rotation and 0‐year storage). The approach proposed in this study includes the interface between biomass growth and emissions and the global carbon cycle, whereas other methods do not model this. These results and the characterization factors produced can determine the climate change benefits or impacts associated with the storage of biomass in the anthroposphere, and the subsequent release of biogenic CO with the radiative forcing integrated in a fixed time window.
Gcb Bioenergy | 2013
Geoffrey Guest; Francesco Cherubini; Anders Hammer Strømman
Bioenergy makes up a significant portion of the global primary energy pie, and its production from modernized technology is foreseen to substantially increase. The climate neutrality of biogenic CO2 emissions from bioenergy grown from sustainably managed biomass resource pools has recently been questioned. The temporary change caused in atmospheric CO2 concentration from biogenic carbon fluxes was found to be largely dependent on the length of biomass rotation period. In this work, we also show the importance of accounting for the unutilized biomass that is left to decompose in the resource pool and how the characterization factor for the climate impact of biogenic CO2 emissions changes whether residues are removed for bioenergy or not. With the case of Norwegian Spruce biomass grown in Norway, we found that significantly more biogenic CO2 emissions should be accounted towards contributing to global warming potential when residues are left in the forest. For a 100‐year time horizon, the global warming potential bio factors suggest that between 44 and 62% of carbon‐flux, neutral biogenic CO2 emissions at the energy conversion plant should be attributed to causing equivalent climate change potential as fossil‐based CO2 emissions. For a given forest residue extraction scenario, the same factor should be applied to the combustion of any combination of stem and forest residues. Life cycle analysis practitioners should take these impacts into account and similar region/species specific factors should be developed.
Journal of Environmental Management | 2013
Francesco Cherubini; Geoffrey Guest; Anders Hammer Strømman
Analyses of global warming impacts from forest bioenergy systems are usually conducted either at a single stand level or at a landscape level, yielding findings that are sometimes interpreted as contrasting. In this paper, we investigate and reconcile the scales at which environmental impact analyses of forest bioenergy systems are undertaken. Focusing on the changes caused in atmospheric CO2 concentration of forest bioenergy systems characterized by different initial states of the forest, we show the features of the analyses at different scales and depict the connections between them. Impacts on atmospheric CO2 concentration at a single stand level are computed through impulse response functions (IRF). Results at a landscape level are elaborated through direct application of IRFs to the emission profile, so to account for the fluxes from all the stands across time and space. Impacts from fossil CO2 emissions are used as a benchmark. At a landscape level, forest bioenergy causes an increase in atmospheric CO2 concentration for the first decades that is similar to the impact from fossil CO2, but then the dynamics clearly diverge because while the impact from fossil CO2 continues to rise that from bioenergy stabilizes at a certain level. These results perfectly align with those obtained at a single stand for which characterization factors have been developed. In the hypothetical case of a sudden cessation of emissions, the change caused in atmospheric CO2 concentration from biogenic CO2 emissions reverses within a couple of decades, while that caused by fossil CO2 emissions remains considerably higher for centuries. When counterfactual aspects like the additional sequestration that would have occurred in the forest if not harvested and the theoretical displacement of fossil CO2 are included in the analysis, results can widely differ, as the CO2 debt at a landscape level ranges from a few years to several centuries (depending on the underlying assumptions considered).
Journal of Industrial Ecology | 2014
Bhawna Singh; Geoffrey Guest; Ryan M. Bright; Anders Hammer Strømman
Use of biomass‐based electricity and hydrogen in alternative transport could provide environmentally sustainable transport options with possible improvements in greenhouse gas balance. We perform a life cycle assessment of electric vehicle (EV) and fuel cell vehicle (FCV) powered by bioelectricity and biohydrogen, respectively, derived from Norwegian boreal forest biomass, considering the nonclimate neutrality of biological carbon dioxide (CO) emissions and alteration in surface albedo resulting from biomass harvesting - both with and without CO capture and storage (CCS) - while benchmarking these options against EVs powered by the average European electricity mix. Results show that with due consideration of the countering effects from global warming potential (GWP) factors for biogenic CO emissions and change in radiative forcing of the surface for the studied region, bioenergy‐based EVs and FCVs provide reductions of approximately 30%, as compared to the reference EV powered by the average European electricity mix. With CCS coupled to bioenergy production, the biomass‐based vehicle transport results in a net global warming impact reduction of approximately 110% to 120% (giving negative GWP and creating a climate‐cooling benefit from biomass use). Other environmental impacts vary from −60% to 60%, with freshwater eutrophication showing maximum reductions (40% for the EV case and 60% for the FCV case) and photochemical oxidation showing a maximum increase (60% in the FCV value chain).
Journal of Sustainable Forestry | 2014
Geoffrey Guest; Anders Hammer Strømman
Although not without its critics, considerable recognition has been given to the climate cooling benefits provided by storing carbon from biomass in various storage pools. However, it has recently been found that depending on the storage pool/period and source of biomass, the associated climate impacts may be a burden or a benefit. It is important that carbon accounting schemes and life cycle assessment practitioners take these carbon/CO2 flux dynamics and the climate impacts that they create into consideration. In this work we illustrate these climate impacts with a Norwegian case study using a material flow analysis of the biogenic carbon in harvested wood products derived from a 2006 harvest year. We illustrate the dynamic carbon balance over time and show how the climate impacts can diverge greatly between two well-known climate impact metrics: global warming potential (GWP) and global temperature potential (GTP). We also show how these climate impacts can be attributed to contributing parties with an example of a glue laminated beam value chain which is stored in a long-lived building. We discuss the associated attribution issues that will inevitably arise and we offer recommendations on how best to minimize them.
Scientific Reports | 2018
Anders Arvesen; Francesco Cherubini; Gonzalo del Alamo Serrano; Rasmus Astrup; Michael Becidan; Helmer Belbo; Franziska Goile; Tuva Grytli; Geoffrey Guest; Carine Lausselet; Per Kr. Rørstad; Line Rydså; Morten Seljeskog; Øyvind Skreiberg; Veena Sajith Vezhapparambu; Anders Hammer Strømman
Climate impacts of forest bioenergy result from a multitude of warming and cooling effects and vary by location and technology. While past bioenergy studies have analysed a limited number of climate-altering pollutants and activities, no studies have jointly addressed supply chain greenhouse gas emissions, biogenic CO2 fluxes, aerosols and albedo changes at high spatial and process detail. Here, we present a national-level climate impact analysis of stationary bioenergy systems in Norway based on wood-burning stoves and wood biomass-based district heating. We find that cooling aerosols and albedo offset 60–70% of total warming, leaving a net warming of 340 or 69 kg CO2e MWh−1 for stoves or district heating, respectively. Large variations are observed over locations for albedo, and over technology alternatives for aerosols. By demonstrating both notable magnitudes and complexities of different climate warming and cooling effects of forest bioenergy in Norway, our study emphasizes the need to consider multiple forcing agents in climate impact analysis of forest bioenergy.
Environmental Impact Assessment Review | 2013
Geoffrey Guest; Ryan M. Bright; Francesco Cherubini; Anders Hammer Strømman
Mitigation and Adaptation Strategies for Global Change | 2013
Geoffrey Guest; Francesco Cherubini; Anders Hammer Strømman