Ryan M. Bright
Norwegian University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryan M. Bright.
Gcb Bioenergy | 2015
Felix Creutzig; N. H. Ravindranath; Göran Berndes; Simon Bolwig; Ryan M. Bright; Francesco Cherubini; Helena L. Chum; Esteve Corbera; Mark A. Delucchi; André Faaij; Joseph Fargione; Helmut Haberl; Garvin Heath; Oswaldo Lucon; Richard J. Plevin; Alexander Popp; Carmenza Robledo-Abad; Steven K. Rose; Pete Smith; Anders Hammer Strømman; Sangwon Suh; Omar Masera
Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation: Land‐use and energy experts, land‐use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life‐cycle assessment experts. We summarize technological options, outline the state‐of‐the‐art knowledge on various climate effects, provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end‐use efficiency, improved land carbon‐stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small‐scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential as up to 100 EJ: high agreement; 100–300 EJ: medium agreement; above 300 EJ: low agreement. Stabilization scenarios indicate that bioenergy may supply from 10 to 245 EJ yr−1 to global primary energy supply by 2050. Models indicate that, if technological and governance preconditions are met, large‐scale deployment (>200 EJ), together with BECCS, could help to keep global warming below 2° degrees of preindustrial levels; but such high deployment of land‐intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration of bioenergy systems into agriculture and forest landscapes can improve land and water use efficiency and help address concerns about environmental impacts. We conclude that the high variability in pathways, uncertainties in technological development and ambiguity in political decision render forecasts on deployment levels and climate effects very difficult. However, uncertainty about projections should not preclude pursuing beneficial bioenergy options.
Environmental Research Letters | 2012
Francesco Cherubini; Ryan M. Bright; Anders Hammer Strømman
Production of biomass for bioenergy can alter biogeochemical and biogeophysical mechanisms, thus affecting local and global climate. Recent scientific developments have mainly embraced impacts from land use changes resulting from area-expanded biomass production, with several extensive insights available. Comparably less attention, however, has been given to the assessment of direct land surface‐atmosphere climate impacts of bioenergy systems under rotation such as in plantations and forested ecosystems, whereby land use disturbances are only temporary. Here, following IPCC climate metrics, we assess bioenergy systems in light of two important dynamic land use climate factors, namely, the perturbation in atmospheric carbon dioxide.CO2/ concentration caused by the timing of biogenic CO2 fluxes, and temporary perturbations to surface reflectivity (albedo). Existing radiative forcing-based metrics can be adapted to include such dynamic mechanisms, but high spatial and temporal modeling resolution is required. Results show the importance of specifically addressing the climate forcings from biogenic CO2 fluxes and changes in albedo, especially when biomass is sourced from forested areas affected by seasonal snow cover. The climate performance of bioenergy systems is highly dependent on biomass species, local climate variables, time horizons, and the climate metric considered. Bioenergy climate impact studies and accounting mechanisms should rapidly adapt to cover both biogeochemical and biogeophysical impacts, so that policy makers can rely on scientifically robust analyses and promote the most effective global climate mitigation options.
Journal of Industrial Ecology | 2009
Ryan M. Bright; Anders Hammer Strømman
The boreal forests of Scandinavia offer a considerable resource base, and use of the resource for the production of less carbon-intensive alternative transport fuel is one strategy being considered in Norway. Here, we quantify the resource potential and investigate the environmental implications of wood-based transportation relative to a fossil reference system for a specific region in Norway. We apply a well-to-wheel life cycle assessment to evaluate four E85 production system designs based on two distinct wood-to-ethanol conversion technologies. We form best and worst case scenarios to assess the sensitivity of impact results through the adjustment of key parameters, such as biomass-to-ethanol conversion efficiency and upstream biomass transport distance. Depending on the system design, global warming emission reductions of 46% to 68% per-MJ-gasoline avoided can be realized in the region, along with reductions in most of the other environmental impact categories considered. We find that the regions surplus forest-bioenergy resources are vast; use for the production of bioethanol today would have resulted in the displacement of 55% to 68% of the regions gasoline-based global warming emissionor 6% to 8% of Norways total global warming emissions associated with road transportation.
Environmental Research Letters | 2013
Francesco Cherubini; Ryan M. Bright; Anders Hammer Strømman
Environmental impact studies of forest bioenergy systems usually account for CO2 emissions and removals and identify the so-called carbon debt of bioenergy through comparison with a reference system. This approach is based on a simple sum of fluxes and does not consider any direct physical impact or climate system response. Other recent applications go one step further and elaborate impulse response functions (IRFs) and subsequent metrics for biogenic CO2 emissions that are compatible with the life-cycle assessment (LCA) methodology. However, a thorough discussion about the role of the different metrics in the interpretation of the climate impacts of forest bioenergy systems is still missing. In this work, we assess a single LCA dataset of selected bioenergy systems using different emission metrics based on cumulative CO2 emissions, radiative forcing and global surface temperature. We consider both absolute and normalized metrics for single pulses and sustained emissions. The key challenges are the choice of end point (emissions, concentration, radiative forcing, change in temperature, etc), the type of measure (instantaneous or time-integrated) and the treatment of time. Bioenergy systems usually perform better than fossil counterparts if assessed with instantaneous metrics, including global surface temperature change, and in some cases can give a net global cooling effect in the short term. The analysis of sustained, or continuous emissions, also shows that impacts from bioenergy systems are generally reversible, while those from fossil fuels are permanent.As shown in this study, the metric choice can have a large influence on the results. The dominant role traditionally assigned to cumulative metrics in LCA studies and climate impact accounting schemes should therefore be reconsidered, because such metrics can fail to capture important time dependences unique to the biomass system under analysis (to which instantaneous metrics are well suited).
Journal of Industrial Ecology | 2011
Geoffrey Guest; Ryan M. Bright; Francesco Cherubini; Ottar Michelsen; Anders Hammer Strømman
Norway, like many countries, has realized the need to extensively plan its renewable energy future sooner rather than later. Combined heat and power (CHP) through gasification of forest residues is one technology that is expected to aid Norway in achieving a desired doubling of bioenergy production by 2020. To assess the environmental impacts to determine the most suitable CHP size, we performed a unit process‐based attributional life cycle assessment (LCA), in which we compared three scales of CHP over ten environmental impact categories—micro (0.1 megawatts electricity [MWe]), small (1 MWe), and medium (50 MWe) scale. The functional units used were 1 megajoule (MJ) of electricity and 1 MJ of district heating delivered to the end user (two functional units), and therefore, the environmental impacts from distribution of electricity and hot water to the consumer were also considered. This study focuses on a regional perspective situated in middle‐Norways Nord‐ and Sor‐Trondelag counties. Overall, the unit‐based environmental impacts between the scales of CHP were quite mixed and within the same magnitude. The results indicated that energy distribution from CHP plant to end user creates from less than 1% to nearly 90% of the total system impacts, depending on impact category and energy product. Also, an optimal small‐scale CHP plant may be the best environmental option. The CHP systems had a global warming potential ranging from 2.4 to 2.8 grams of carbon dioxide equivalent per megajoule of thermal (g CO2‐eq/MJth) district heating and from 8.8 to 10.5 grams carbon dioxide equivalent per megajoule of electricity (g CO2‐eq/MJel) to the end user.
Environmental Science & Technology | 2011
Ryan M. Bright; Anders Hammer Strømman; Glen P. Peters
Radiative forcing impacts due to increased harvesting of boreal forests for use as transportation biofuel in Norway are quantified using simple climate models together with life cycle emission data, MODIS surface albedo data, and a dynamic land use model tracking carbon flux and clear-cut area changes within productive forests over a 100-year management period. We approximate the magnitude of radiative forcing due to albedo changes and compare it to the forcing due to changes in the carbon cycle for purposes of attributing the net result, along with changes in fossil fuel emissions, to the combined anthropogenic land use plus transport fuel system. Depending on albedo uncertainty and uncertainty about the geographic distribution of future logging activity, we report a range of results, thus only general conclusions about the magnitude of the carbon offset potential due to changes in surface albedo can be drawn. Nevertheless, our results have important implications for how forests might be managed for mitigating climate change in light of this additional biophysical criterion, and in particular, on future biofuel policies throughout the region. Future research efforts should be directed at understanding the relationships between the physical properties of managed forests and albedo, and how albedo changes in time as a result of specific management interventions.
Environmental Science & Technology | 2012
Sebastian Meyer; Ryan M. Bright; Daniel Fischer; Hardy Schulz; Bruno Glaser
Biochar application to agricultural soils can change the surface albedo which could counteract the climate mitigation benefit of biochar systems. However, the size of this impact has not yet been quantified. Based on empirical albedo measurements and literature data of arable soils mixed with biochar, a model for annual vegetation cover development based on satellite data and an assessment of the annual development of surface humidity, an average mean annual albedo reduction of 0.05 has been calculated for applying 30-32 Mg ha(-1) biochar on a test field near Bayreuth, Germany. The impact of biochar production and application on the carbon cycle and on the soil albedo was integrated into the greenhouse gas (GHG) balance of a modeled pyrolysis based biochar system via the computation of global warming potential (GWP) characterization factors. The analysis resulted in a reduction of the overall climate mitigation benefit of biochar systems by 13-22% due to the albedo change as compared to an analysis which disregards the albedo effect. Comparing the use of the same quantity of biomass in a biochar system to a bioenergy district heating system which replaces natural gas combustion, bioenergy heating systems achieve 99-119% of the climate benefit of biochar systems according to the model calculation.
Global Change Biology | 2015
Ryan M. Bright; Kaiguang Zhao; Robert B. Jackson; Francesco Cherubini
By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region.
Journal of Industrial Ecology | 2010
Ryan M. Bright; Anders Hammer Strømman; Troy R. Hawkins
In Norway, the boreal forest offers a considerable resource base, and emerging technologies may soon make it commercially viable to convert these resources into low-carbon biofuels. Decision makers are required to make informed decisions about the environmental implications of wood biofuels today that will affect the medium- and long-term development of a wood-based biofuels industry in Norway. We first assess the national forest-derived resource base for use in biofuel production. A set of biomass conversion technologies is then chosen and evaluated for scenarios addressing biofuel production and consumption by select industry sectors. We then apply an environmentally extended, mixed-unit, two-region input−output model to quantify the global warming mitigation and fossil fuel displacement potentials of two biofuel production and consumption scenarios in Norway up to 2050. We find that a growing resource base, when used to produce advanced biofuels, results in cumulative global warming mitigation potentials of between 58 and 83 megatonnes of carbon dioxide equivalents avoided (Mt-CO-eq. avoided) in Norway, depending on the biofuel scenario. In recent years, however, the domestic pulp and paper industry — due to increasing exposure to international competition, capacity reductions, and increasing production costs — has been in decline. In the face of a declining domestic pulp and paper industry, imported pulp and paper products are required to maintain the demand for these goods and thus the greenhouse gas (GHG) emissions of the exporting region embodied in Norways pulp and paper imports reduce the systemwide benefit in terms of avoided greenhouse gas emissions by 27%.
Environmental Science & Technology | 2015
Ryan M. Bright
The regulation by vegetation of heat, momentum, and moisture exchanges between the land surface and the atmosphere is a major component in Earths climate system. By altering surface biogeophysics, anthropogenic land use activities often perturb these exchanges and thereby directly affect climate. Although long recognized scientifically as being important, biogeophysical climate forcings from land use and land cover changes (LULCC) are rarely included in life cycle assessment (LCA). Here, I review climate metrics for characterizing biogeophysical climate forcings from LULCC, focusing mostly on those that do not require coupled land-atmosphere climate models to compute. I discuss their merits, highlight their pros and cons in terms of their compatibility with the LCA framework, outline near-term practical guidelines and solutions for their integration, and point to areas of longer term research needs in both the climate science and LCA research communities.