Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey Livesey is active.

Publication


Featured researches published by Geoffrey Livesey.


Nutrition Research Reviews | 2003

Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties

Geoffrey Livesey

Abstract Polyols are hydrogenated carbohydrates used as sugar replacers. Interest now arises because of their multiple potential health benefits. They are non-cariogenic (sugar-free tooth-friendly), low-glycaemic (potentially helpful in diabetes and cardiovascular disease), low-energy and low-insulinaemic (potentially helpful in obesity), low-digestible (potentially helpful in the colon), osmotic (colon-hydrating, laxative and purifying) carbohydrates. Such potential health benefits are reviewed. A major focus here is the glycaemic index (GI) of polyols as regards the health implications of low-GI foods. The literature on glycaemia and insulinaemia after polyol ingestion was analysed and expressed in the GI and insulinaemic index (II) modes, which yielded the values: erythritol 0, 2; xylitol 13, 11; sorbitol 9, 11; mannitol 0, 0; maltitol 35, 27; isomalt 9, 6; lactitol 6, 4; polyglycitol 39, 23. These values are all much lower than sucrose 65, 43 or glucose 100, 100. GI values on replacing sucrose were independent of both intake (up to 50 g) and the state of carbohydrate metabolism (normal, type 1 with artificial pancreas and type 2 diabetes mellitus). The assignment of foods and polyols to GI bands is considered, these being: high (> 70), intermediate (> 55-70), low (> 40-55), and very low (< 40) including non-glycaemic; the last aims to target particularly low-GI-carbohydrate-based foods. Polyols ranged from low to very low GI. An examination was made of the dietary factors affecting the GI of polyols and foods. Polyol and other food GI values could be used to estimate the GI of food mixtures containing polyols without underestimation. Among foods and polyols a departure of II from GI was observed due to fat elevating II and reducing GI. Fat exerted an additional negative influence on GI, presumed due to reduced rates of gastric emptying. Among the foods examined, the interaction was prominent with snack foods; this potentially damaging insulinaemia could be reduced using polyols. Improved glycated haemoglobin as a marker of glycaemic control was found in a 12-week study of type 2 diabetes mellitus patients consuming polyol, adding to other studies showing improved glucose control on ingestion of low-GI carbohydrate. In general some improvement in long-term glycaemic control was discernible on reducing the glycaemic load via GI by as little as 15-20 g daily. Similar amounts of polyols are normally acceptable. Although polyols are not essential nutrients, they contribute to clinically recognised maintenance of a healthy colonic environment and function. A role for polyols and polyol foods to hydrate the colonic contents and aid laxation is now recognised by physicians. Polyols favour saccharolytic anaerobes and aciduric organisms in the colon, purifying the colon of endotoxic, putrefying and pathological organisms, which has clinical relevance. Polyols also contribute towards short-chain organic acid formation for a healthy colonic epithelium. Polyol tooth-friendliness and reduced energy values are affirmed and add to the potential benefits. In regard to gastrointestinal tolerance, food scientists and nutritionists, physicians, and dentists have in their independent professional capacities each now described sensible approaches to the use and consumption of polyols.


The American Journal of Clinical Nutrition | 2013

Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies

Geoffrey Livesey; Richard Taylor; Helen Livesey; Simin Liu

BACKGROUND Although much is known about the association between dietary glycemic load (GL) and type 2 diabetes (T2D), prospective cohort studies have not consistently shown a positive dose-response relation. OBJECTIVE We performed a comprehensive examination of evidence on the dose response that links GL to T2D and sources of heterogeneity among all prospective cohort studies on healthy adults available in the literature. DESIGN We conducted a systematic review of all prospective cohort studies and meta-analyses to quantify the GL-T2D relation both without and with adjustment for covariates. RESULTS Among 24 prospective cohort studies identified by August 2012, the GL ranged from ∼60 to ∼280 g per daily intake of 2000 kcal (8.4 MJ). In a fully adjusted meta-analysis model, the GL was positively associated with RR of T2D of 1.45 (95% CI: 1.31, 1.61) for a 100-g increment in GL (P < 0.001; n = 24 studies; 7.5 million person-years of follow-up). Sex (P = 0.03), dietary instrument validity (P < 0.001), and ethnicity (European American compared with other; P = 0.04) together explained 97% of the heterogeneity among studies. After adjustment for heterogeneities, we used both funnel and trim-and-fill analyses to identify a negligible publication bias. Multiple influence, cumulative, and forecast analyses indicated that the GL-T2D relation tended to have reached stability and to have been underestimated. The relation was apparent at all doses of GL investigated, although it was statistically significant only at >95 g GL/2000 kcal. CONCLUSION After we accounted for several sources of heterogeneity, findings from prospective cohort studies that related the GL to T2D appear robust and consistently indicate strong and significantly lower T2D risk in persons who consume lower-GL diets. This review was registered at http://www.crd.york.ac.uk/PROSPERO as CRD42011001810.


Nutrition Research Reviews | 1992

The energy values of dietary fibre and sugar alcohols for man.

Geoffrey Livesey

C A R B O H Y D R A T E S . . 66 LOSSES OF C A R B O H Y D R A T E S TO FAECES . . 67 LOSSES OF E N E R G Y D U E T O F E R M E N T A T I O N . . 67 Production of microbial mass and faecal energy . . . 67 Hydrogen and methane production . . 68 Heat of fermentation . . 68 Eficiency of short chain fat ty acid metabolism . . 69 Recommended ejiciency values . . 69 S M A L L I N T E S T I N A L A B S O R P T I O N O F N S P A N D O L I G O S A C C H A R I D E S . . 70 S M A L L I N T E S T I N A L A B S O R P T I O N , U R I N A R Y LOSSES A N D METABOLISM OF S U G A R A L C O H O L S . . I1 M O D E L L I N G OF N S P D E G R A D A T I O N I N T H E R A T . . 73 SPECIFIC DIGESTIBLE A N D N E T ENERGY VALUES . . . 75 O C C U R R E N C E , C O M P O S I T I O N A N D H E A T S OF C O M B U S T I O N O F FOOD


Metabolism-clinical and Experimental | 1987

The energy cost of triglyceride-fatty acid recycling in nonobese subjects after an overnight fast and four days of starvation☆

M. Elia; C. Zed; G. Neale; Geoffrey Livesey

The basal blood glycerol concentration was determined and the rate of glycerol turnover was assessed by a nonradioactive infusion technique in six healthy nonobese adults after an overnight fast and again after four days of total starvation. Simultaneously, estimates of total energy expenditure and net fat oxidation were made from measurements of oxygen consumption, carbon dioxide production, and urinary nitrogen excretion. The data were combined to provide quantitative estimates of the activity of the triglyceride/fatty acid cycle. The basal concentration of glycerol in venous blood rose from a mean value of 54 +/- 8 mumol/L (SEM) before starvation to 154 +/- 5 mumol/L on day 4 of starvation. Glycerol turnover rates correlated well with the basal blood glycerol concentration (r = .95) and increased from a mean value of 115 +/- 17 mumol/min before starvation (equivalent to mobilization of about 3.95 kJ triglyceride/min) to 304 +/- 20 mumol/min (equivalent to mobilization of about 18.41 kJ/min). The estimated rate of net fat oxidation was 3.00 +/- 0.47 kJ/min before starvation and 4.00 +/- 0.14 kJ/min on day +4 of starvation. The rate of triglyceride energy recycling or rate of deposition of triglyceride energy into fat stores was calculated from the difference in the rate of fat energy mobilization and the rate of energy released during net fat oxidation. The values were found to be 0.94 +/- 0.26 kJ/min before starvation and 6.29 +/- 0.54 kJ/min on day +4 of starvation.(ABSTRACT TRUNCATED AT 250 WORDS)


Nutrition Metabolism and Cardiovascular Diseases | 2015

Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC)

Livia S. A. Augustin; Cyril W.C. Kendall; David J.A. Jenkins; Walter C. Willett; Arne Astrup; Alan W. Barclay; Inger Björck; Jennie Brand-Miller; Furio Brighenti; Annette E Buyken; A. Ceriello; C. La Vecchia; Geoffrey Livesey; Simin Liu; Gabriele Riccardi; S W Rizkalla; John L. Sievenpiper; Antonia Trichopoulou; Thomas M. S. Wolever; Sara Baer-Sinnott; Andrea Poli

BACKGROUND AND AIMS The positive and negative health effects of dietary carbohydrates are of interest to both researchers and consumers. METHODS International experts on carbohydrate research held a scientific summit in Stresa, Italy, in June 2013 to discuss controversies surrounding the utility of the glycemic index (GI), glycemic load (GL) and glycemic response (GR). RESULTS The outcome was a scientific consensus statement which recognized the importance of postprandial glycemia in overall health, and the GI as a valid and reproducible method of classifying carbohydrate foods for this purpose. There was consensus that diets low in GI and GL were relevant to the prevention and management of diabetes and coronary heart disease, and probably obesity. Moderate to weak associations were observed for selected cancers. The group affirmed that diets low in GI and GL should always be considered in the context of diets otherwise understood as healthy, complementing additional ways of characterizing carbohydrate foods, such as fiber and whole grain content. Diets of low GI and GL were considered particularly important in individuals with insulin resistance. CONCLUSIONS Given the high prevalence of diabetes and pre-diabetes worldwide and the consistency of the scientific evidence reviewed, the expert panel confirmed an urgent need to communicate information on GI and GL to the general public and health professionals, through channels such as national dietary guidelines, food composition tables and food labels.


British Journal of Nutrition | 2001

Tolerance of low-digestible carbohydrates: a general view

Geoffrey Livesey

The tolerance of low-digestible carbohydrates (LDCs) may be measured as the potential to cause abdominal symptoms and laxation. Tolerance of any one LDC is determined by its concentration in the food product eaten, the amount of the food product eaten, the frequency of eating the food and the consumption of other foods (increasing tolerance) and water decreasing tolerance). Added to these, individuals vary considerably in their response to low-digestible carbohydrates in the reporting of gastrointestinal symptoms. A precise maximum no-response dose is sometimes difficult to obtain because some dose--response curves are distinctly sigmoidal. Food regulators hoping to set a trigger level at which laxation may occur have been unable to take account of all these factors because the necessary information matrices are not available for any one LDC. Nevertheless analysis of the data shows consistent trends and for circumstances when food is consumed throughout the day it now seems feasible to assign specific tolerances to specific low-digestible carbohydrates, especially the polyols for which most is known. The method by which the no-effect dose or laxative threshold is expressed is critical to its application to individual foods.


The American Journal of Clinical Nutrition | 2008

Interventions to lower the glycemic response to carbohydrate foods with a low-viscosity fiber (resistant maltodextrin): meta-analysis of randomized controlled trials

Geoffrey Livesey; Hiroyuki Tagami

ABSTRACT Background: The glycemic response to diet has been linked with noncommunicable diseases and is reduced by low-palatable, viscous, soluble fiber (1). Whether a palatable, low-viscous, soluble fiber such as resistant maltodextrin (RMD) has the same effect is unclear. Objective: The objective was to assess evidence on the attenuation of the blood glucose response to foods by ≤10 g RMD in healthy adults. Design: We conducted a systematic review of randomized, placebo-controlled trials with the use of fixed- and random-effects meta-analyses and meta-regression models. Results: We found data from 37 relevant trials to April 2007. These trials investigated the attenuation of the glycemic response to rice, noodles, pastry, bread, and refined carbohydrates that included 30–173 g available carbohydrate. RMD was administered in drinks or liquid foods or solid foods. Placebo drinks and foods excluded RMD. Percentage attenuation was significant, dose-dependent, and independent of the amount of available carbohydrate coingested. Attenuation of the glycemic response to starchy foods by 6 g RMD in drinks approached ≈20%, but when placed directly into foods was ≈10%—significant (P < 0.001) by both modes of administration. Study quality analyses, funnel plots, and trim-and-fill analyses uncovered no cause of significant systematic bias. Studies from authors affiliated with organizations for-profit were symmetrical without heterogeneity, whereas marginal asymmetry and significant heterogeneity arose among studies involving authors from nonprofit organizations because of some imprecise studies. Conclusions: A nonviscous palatable soluble polysaccharide can attenuate the glycemic response to carbohydrate foods. Evidence of an effect was stronger for RMD in drinks than in foods.


Journal of Nutrition | 2009

Fructose Ingestion: Dose-Dependent Responses in Health Research

Geoffrey Livesey

Many hypotheses of disease risk and prevention depend on inferences about the metabolic effects of fructose; however, there is inadequate attention to dose dependency. Fructose is proving to have bidirectional effects. At moderate or high doses, an effect on any one marker may be absent or even the opposite of that observed at very high or excessive doses; examples include fasting plasma triglyceride, insulin sensitivity, and the putative marker uric acid. Among markers, changes can be beneficial for some (e.g., glycated hemoglobin at moderate to high fructose intake) but adverse for others (e.g., plasma triglycerides at very high or excessive fructose intake). Evidence on body weight indicates no effect of moderate to high fructose intakes, but information is scarce for high or excessive intakes. The overall balance of such beneficial and adverse effects of fructose is difficult to assess but has important implications for the strength and direction of hypotheses about public health, the relevance of some animal studies, and the interpretation of both interventional and epidemiological studies. By focusing on the adverse effects of very high and excessive doses, we risk not noticing the potential benefits of moderate to higher doses, which might moderate the advent and progress of type-2 diabetes, cardiovascular disease, and might even contribute to longevity. A salutary rather than hyperbolic examination of the evidence base needs to be undertaken.


British Journal of Nutrition | 2001

A perspective on food energy standards for nutrition labelling

Geoffrey Livesey

Food energy values used for nutrition labelling and other purposes are traditionally based on the metabolisable energy (ME) standard, which has recent support from. By reference to current practices and published data, the present review critically examines the ME standard and support for it. Theoretical and experimental evidence on the validity of ME and alternatives are considered. ME and alternatives are applied to 1189 foods to assess outcomes. The potential impact of implementing a better standard in food labelling, documentation of energy requirements and food tables, and its impact on users including consumers, trade and professionals, are also examined. Since 1987 twenty-two expert reviews, reports and regulatory documents have fully or partly dropped the ME standard. The principal reason given is that ME only approximates energy supply by nutrients, particularly fermentable carbohydrates. ME has been replaced by net metabolisable energy (NME), which accounts for the efficiency of fuel utilisation in metabolism. Data collated from modern indirect calorimetry studies in human subjects show NME to be valid and applicable to each source of food energy, not just carbohydrates. NME is robust; two independent approaches give almost identical results (human calorimetry and calculation of free energy or net ATP yield) and these approaches are well supported by studies in animals. By contrast, the theoretical basis of ME is totally flawed. ME incompletely represents the energy balance equation, with substantial energy losses in a missing term. In using NME factors an account is made of frequent over-approximations by the ME system, up to 25 % of the NME for individual foods among 1189 foods in British tables, particularly low-energy-density traditional foods. A new simple general factor system is possible based on NME, yet the minimal experimental methodology is no more than that required for ME. By accounting for unavailable carbohydrate the new factor system appears as specific to foods as the USAs food-specific Atwater system, while it is more representative of energy supply from food components. The NME content of foods is readily calculable as the sum from fat (37 kJ/g), protein (13 kJ/g), available carbohydrate (16 kJ/g), fully-fermentable carbohydrate (8 kJ/g), alcohol (26 kJ/g) and other components. Obstacles to the implementation of NME appear to be subjective and minor. In conclusion, the ME standard is at best an approximate surrogate for NME, and inadequately approximates food energy values for the purpose of informing the consumer about the impact on energy balance of the energy supply for equal intake of individual foods. NME is superior to ME for nutrition labelling and other purposes.


British Journal of Nutrition | 1995

Determination of digestible energy values and fermentabilities of dietary fibre supplements: a European interlaboratory study in vivo

Geoffrey Livesey; T. Smith; B.O. Eggum; I. H. Tetens; Margareta Nyman; Marcel Roberfroid; Nathalie M. Delzenne; T. F. Schweizer; Jacques Decombaz

The performance of methods to determine energy conversion factors for dietary fibre (DF) supplements and fermentability (D) values of their non-starch polysaccharides (NSP) was investigated. Heats of combustion, digestible energy (DE) and D values were determined on five DF supplements in five European laboratories on five separate occasions. In each instance the DF supplements were fed to juvenile male Wistar rats at two doses, 50 and 100 g/kg basal diet, for 3 weeks with food and faeces collected in the 3rd week. Among-laboratory variations in heats of combustion (delta Hc) were < 2%. DE values (kJ/g dry weight) at the upper and lower doses respectively were: 10.4 and 9.9 for a high-methoxyl apple pectin, 9.5 and 9.4 for a sugar-beet DF supplement, 12.2 and 12.7 for soyabean DF supplement, 3.8 and 4.0 for maize bran, and 0.3 and 0.3 for Solka-floc cellulose. Variations among laboratories, among occasions and among animals were < 1, < 2 and < 2.5 kJ/g respectively. The among-occasion: among-laboratory variance ratio for DE was 0.5, suggesting the method performed equally well in all laboratories. There was no evidence of learning of fatigue or fatigue in the performance of the method. D values were also independent of dose and at the high and lower doses were: pectin 0.92 and 0.95, sugar-beet NSP 0.68 and 0.68, soyabean NSP 0.86 and 0.88, maize bran 0.17 and 0.18, cellulose 0.07 and 0.06. Among-laboratory variance tended to increase with decreasing fermentability and ranged from 0.03 to 0.18. The DE and D data were not significantly different from a previously proposed relationship DE = 0.7 x delta Hc x D, where delta Hc is the heat of combustion of the supplement. We conclude that while the among-laboratory variation in the D of difficult-to-ferment NSP is too large for the reliable prediction of energy value the method for the direction determination of DE is both reproducible and repeatable, that DE is independent of dosage of DF supplement up to 100 g/kg diet, and that it is safe to discriminate between energy values with a precision of 3 kJ/g. The conversion of both DE and D to net metabolizable energy for the purpose of food labelling, tables and databases is described.

Collaboration


Dive into the Geoffrey Livesey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Taylor

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Marinos Elia

University Hospital Southampton NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Astrup

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Howlett

University of Hertfordshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge