Geoffrey M. Wahl
Salk Institute for Biological Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geoffrey M. Wahl.
Cancer Research | 2006
Michael F. Clarke; John E. Dick; Peter Dirks; Connie J. Eaves; Catriona Jamieson; D. Leanne Jones; Jane E. Visvader; Irving L. Weissman; Geoffrey M. Wahl
A workshop was convened by the AACR to discuss the rapidly emerging cancer stem cell model for tumor development and progression. The meeting participants were charged with evaluating data suggesting that cancers develop from a small subset of cells with self-renewal properties analogous to organ
Cell | 1992
Yuxin Yin; Michael A. Tainsky; Farideh Z. Bischoff; Louise C. Strong; Geoffrey M. Wahl
Loss of cell cycle control and acquisition of chromosomal rearrangements such as gene amplification often occur during tumor progression, suggesting that they may be correlated. We show here that the wild-type p53 allele is lost when fibroblasts from patients with the Li-Fraumeni syndrome (LFS) are passaged in vitro. Normal and LFS cells containing wild-type p53 arrested in G1 when challenged with the uridine biosynthesis inhibitor PALA and did not undergo PALA-selected gene amplification. The converse occurred in cells lacking wild-type p53 expression. Expression of wild-type p53 in transformants of immortal and tumor cells containing mutant p53 alleles restored G1 control and reduced the frequency of gene amplification to undetectable levels. These studies reveal that p53 contributes to a metabolically regulated G1 check-point, and they provide a model for understanding how abnormal cell cycle progression leads to the genetic rearrangements involved in tumor progression.
Nature Reviews Cancer | 2006
Franck Toledo; Geoffrey M. Wahl
Mutations in TP53, the gene that encodes the tumour suppressor p53, are found in 50% of human cancers, and increased levels of its negative regulators MDM2 and MDM4 (also known as MDMX) downregulate p53 function in many of the rest. Understanding p53 regulation remains a crucial goal to design broadly applicable anticancer strategies based on this pathway. This Review of in vitro studies, human tumour data and recent mouse models shows that p53 post-translational modifications have modulatory roles, and MDM2 and MDM4 have more profound roles for regulating p53. Importantly, MDM4 emerges as an independent target for drug development, as its inactivation is crucial for full p53 activation.
Nature | 2009
Teruhisa Kawamura; Jotaro Suzuki; Yunyuan V. Wang; Sergio Menendez; Laura Batlle Morera; Angel Raya; Geoffrey M. Wahl; Juan Carlos Izpisua Belmonte
Reprogramming somatic cells to induced pluripotent stem (iPS) cells has been accomplished by expressing pluripotency factors and oncogenes, but the low frequency and tendency to induce malignant transformation compromise the clinical utility of this powerful approach. We address both issues by investigating the mechanisms limiting reprogramming efficiency in somatic cells. Here we show that reprogramming factors can activate the p53 (also known as Trp53 in mice, TP53 in humans) pathway. Reducing signalling to p53 by expressing a mutated version of one of its negative regulators, by deleting or knocking down p53 or its target gene, p21 (also known as Cdkn1a), or by antagonizing reprogramming-induced apoptosis in mouse fibroblasts increases reprogramming efficiency. Notably, decreasing p53 protein levels enabled fibroblasts to give rise to iPS cells capable of generating germline-transmitting chimaeric mice using only Oct4 (also known as Pou5f1) and Sox2. Furthermore, silencing of p53 significantly increased the reprogramming efficiency of human somatic cells. These results provide insights into reprogramming mechanisms and suggest new routes to more efficient reprogramming while minimizing the use of oncogenes.
Molecular Cell | 2002
Omid Vafa; Mark Wade; Suzanne Kern; Michelle Beeche; Tej K. Pandita; Garret M. Hampton; Geoffrey M. Wahl
Oncogene overexpression activates p53 by a mechanism posited to involve uncharacterized hyperproliferative signals. We determined whether such signals produce metabolic perturbations that generate DNA damage, a known p53 inducer. Biochemical, cytological, cell cycle, and global gene expression analyses revealed that brief c-Myc activation can induce DNA damage prior to S phase in normal human fibroblasts. Damage correlated with induction of reactive oxygen species (ROS) without induction of apoptosis. Deregulated c-Myc partially disabled the p53-mediated DNA damage response, enabling cells with damaged genomes to enter the cycle, resulting in poor clonogenic survival. An antioxidant reduced ROS, decreased DNA damage and p53 activation, and improved survival. We propose that oncogene activation can induce DNA damage and override damage controls, thereby accelerating tumor progression via genetic instability.
The EMBO Journal | 1999
Jayne M. Stommel; Natalie D. Marchenko; Gretchen S. Jimenez; Ute M. Moll; Thomas J. Hope; Geoffrey M. Wahl
Appropriate subcellular localization is crucial for regulating p53 function. We show that p53 export is mediated by a highly conserved leucine‐rich nuclear export signal (NES) located in its tetramerization domain. Mutation of NES residues prevented p53 export and hampered tetramer formation. Although the p53‐binding protein MDM2 has an NES and has been proposed to mediate p53 export, we show that the intrinsic p53 NES is both necessary and sufficient for export. This report also demonstrates that the cytoplasmic localization of p53 in neuroblastoma cells is due to its hyperactive nuclear export: p53 in these cells can be trapped in the nucleus by the export‐inhibiting drug leptomycin B or by binding a p53‐tetramerization domain peptide that masks the NES. We propose a model in which regulated p53 tetramerization occludes its NES, thereby ensuring nuclear retention of the DNA‐binding form. We suggest that attenuation of p53 function involves the conversion of tetramers into monomers or dimers, in which the NES is exposed to the proteins which mediate their export to the cytoplasm.
Nature Genetics | 1999
Xu-Rong Jiang; Gretchen S. Jimenez; Edwin Chang; Maria Frolkis; Brenda Kusler; Marijke Sage; Michelle Beeche; Andrea G. Bodnar; Geoffrey M. Wahl; Thea D. Tlsty; Choy-Pik Chiu
Expression of the human telomerase catalytic component, hTERT, in normal human somatic cells can reconstitute telomerase activity and extend their replicative lifespan. We report here that at twice the normal number of population doublings, telomerase-expressing human skin fibroblasts (BJ-hTERT) and retinal pigment epithelial cells (RPE-hTERT) retain normal growth control in response to serum deprivation, high cell density, G1 or G2 phase blockers and spindle inhibitors. In addition, we observed no cell growth in soft agar and detected no tumour formation in vivo. Thus, we find that telomerase expression in normal cells does not appear to induce changes associated with a malignant phenotype.
Nature Reviews Cancer | 2013
Mark Wade; Yao‑Cheng Li; Geoffrey M. Wahl
The MDM2 and MDMX (also known as HDMX and MDM4) proteins are deregulated in many human cancers and exert their oncogenic activity predominantly by inhibiting the p53 tumour suppressor. However, the MDM proteins modulate and respond to many other signalling networks in which they are embedded. Recent mechanistic studies and animal models have demonstrated how functional interactions in these networks are crucial for maintaining normal tissue homeostasis, and for determining responses to oncogenic and therapeutic challenges. This Review highlights the progress made and pitfalls encountered as the field continues to search for MDM-targeted antitumour agents.
Current Biology | 1998
Mirit I. Aladjem; Benjamin T. Spike; Luo Wei Rodewald; Thomas J. Hope; Martina Klemm; Rudolf Jaenisch; Geoffrey M. Wahl
BACKGROUND Embryonic stem (ES) cells can contribute precursors to all adult cell lineages. Consequently, damage to ES cell genomes may cause serious developmental malfunctions. In somatic cells, cell-cycle checkpoints limit DNA damage by preventing DNA replication under conditions that may produce chromosomal aberrations. The tumor suppressor p53 is involved in such checkpoint controls and is also required to avoid a high rate of embryonic malformations. We characterized the cell-cycle and DNA-damage responses of ES cells to elucidate the mechanisms that prevent accumulation or transmission of damaged genomes during development. RESULTS ES cells derived from wild-type mice did not undergo cell-cycle arrest in response to DNA damage or nucleotide depletion, although they synthesized abundant quantities of p53. The p53 protein in ES cells was cytoplasmic and translocated inefficiently to the nucleus upon nucleotide depletion. Expression of high levels of active p53 from an adenovirus vector could not trigger cell cycle arrest. Instead, ES cells that sustained DNA damage underwent p53-independent apoptosis. The antimetabolite-induced p53-dependent arrest response was restored in ES cells upon differentiation. CONCLUSIONS Cell-cycle regulatory pathways in early embryos differ significantly from those in differentiated somatic cells. In undifferentiated ES cells, p53 checkpoint pathways are compromised by factors that affect the nuclear localization of p53 and by the loss of downstream factors that are necessary to induce cell-cycle arrest. A p53-independent programmed cell death pathway is effectively employed to prevent cells with damaged genomes from contributing to the developing organism. The p53-mediated checkpoint controls become important when differentiation occurs.
Nature Cell Biology | 2001
Geoffrey M. Wahl; Antony M. Carr
The cellular response to ionizing radiation provides a conceptual framework for understanding how a yeast checkpoint system, designed to make binary decisions between arrest and cycling, evolved in a way as to allow reversible arrest, senescence or apoptosis in mammals. We propose that the diversity of responses to ionizing radiation in mammalian cells is possible because of the addition of a new regulatory control module involving the tumour-suppressor gene p53. We review the complex mechanisms controlling p53 activity and discuss how the p53 regulatory module enables cells to grow, arrest or die by integrating DNA damage checkpoint signals with the response to normal mitogenic signalling and the aberrant signalling engendered by oncogene activation.