Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin T. Spike is active.

Publication


Featured researches published by Benjamin T. Spike.


Current Biology | 1998

ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage

Mirit I. Aladjem; Benjamin T. Spike; Luo Wei Rodewald; Thomas J. Hope; Martina Klemm; Rudolf Jaenisch; Geoffrey M. Wahl

BACKGROUNDnEmbryonic stem (ES) cells can contribute precursors to all adult cell lineages. Consequently, damage to ES cell genomes may cause serious developmental malfunctions. In somatic cells, cell-cycle checkpoints limit DNA damage by preventing DNA replication under conditions that may produce chromosomal aberrations. The tumor suppressor p53 is involved in such checkpoint controls and is also required to avoid a high rate of embryonic malformations. We characterized the cell-cycle and DNA-damage responses of ES cells to elucidate the mechanisms that prevent accumulation or transmission of damaged genomes during development.nnnRESULTSnES cells derived from wild-type mice did not undergo cell-cycle arrest in response to DNA damage or nucleotide depletion, although they synthesized abundant quantities of p53. The p53 protein in ES cells was cytoplasmic and translocated inefficiently to the nucleus upon nucleotide depletion. Expression of high levels of active p53 from an adenovirus vector could not trigger cell cycle arrest. Instead, ES cells that sustained DNA damage underwent p53-independent apoptosis. The antimetabolite-induced p53-dependent arrest response was restored in ES cells upon differentiation.nnnCONCLUSIONSnCell-cycle regulatory pathways in early embryos differ significantly from those in differentiated somatic cells. In undifferentiated ES cells, p53 checkpoint pathways are compromised by factors that affect the nuclear localization of p53 and by the loss of downstream factors that are necessary to induce cell-cycle arrest. A p53-independent programmed cell death pathway is effectively employed to prevent cells with damaged genomes from contributing to the developing organism. The p53-mediated checkpoint controls become important when differentiation occurs.


Molecular and Cellular Biology | 2007

BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy

Kristin Tracy; Benjamin Dibling; Benjamin T. Spike; James R. Knabb; Paul T. Schumacker; Kay F. Macleod

ABSTRACT Hypoxia and nutrient deprivation are environmental stresses governing the survival and adaptation of tumor cells in vivo. We have identified a novel role for the Rb tumor suppressor in protecting against nonapoptotic cell death in the developing mouse fetal liver, in primary mouse embryonic fibroblasts, and in tumor cell lines. Loss of pRb resulted in derepression of BNip3, a hypoxia-inducible member of the Bcl-2 superfamily of cell death regulators. We identified BNIP3 as a direct target of pRB/E2F-mediated transcriptional repression and showed that pRB attenuates the induction of BNIP3 by hypoxia-inducible factor to prevent autophagic cell death. BNIP3 was essential for hypoxia-induced autophagy, and its ability to promote autophagosome formation was enhanced under conditions of nutrient deprivation. Knockdown of BNIP3 reduced cell death, and remaining deaths were necrotic in nature. These studies identify BNIP3 as a key regulator of hypoxia-induced autophagy and suggest a novel role for the RB tumor suppressor in preventing nonapoptotic cell death by limiting the extent of BNIP3 induction in cells.


Journal of Immunology | 2001

Oligoclonal IgA Response in the Vascular Wall in Acute Kawasaki Disease

Anne H. Rowley; Stanford T. Shulman; Benjamin T. Spike; Carrie A. Mask; Susan C. Baker

Kawasaki Disease (KD) is a potentially fatal acute vasculitis of childhood. Although KD is the leading cause of acquired heart disease in children in developed nations, its pathogenesis remains unknown. We previously reported the novel observation that IgA plasma cells infiltrate the vascular wall in acute KD. We have now examined the clonality of this IgA response in vascular tissue from three fatal cases of KD to determine whether it is oligoclonal, suggesting an Ag-driven process, or polyclonal, suggesting nonspecific B cell activation or a response to a superantigen. We first sequenced VDJ junctions of 44 α genes isolated from a primary, unamplified KD vascular cDNA library. Five sets of clonally related α sequences were identified, comprising 34% (15 of 44) of the isolated α sequences. Furthermore, point mutations consistent with somatic mutation were detected in the related sequences. Next, using formalin-fixed coronary arteries from two additional fatal KD cases, we sequenced VDJ junctions of α genes isolated by RT-PCR, and a restricted pattern of CDR3 usage was observed in both. We conclude that the vascular IgA response in acute KD is oligoclonal. The identification of an oligoclonal IgA response in KD strongly suggests that the immune response to this important childhood illness is Ag-driven.


Cell Stem Cell | 2012

A Mammary Stem Cell Population Identified and Characterized in Late Embryogenesis Reveals Similarities to Human Breast Cancer

Benjamin T. Spike; Dannielle D. Engle; Jennifer C. Lin; Samantha K. Cheung; Justin La; Geoffrey M. Wahl

Gene expression signatures relating mammary stem cell populations to breast cancers have focused on adult tissue. Here, we identify, isolate, and characterize the fetal mammary stem cell (fMaSC) state since the invasive and proliferative processes of mammogenesis resemble phases of cancer progression. fMaSC frequency peaks late in embryogenesis, enabling more extensive stem cell purification than achieved with adult tissue. fMaSCs are self-renewing, multipotent, and coexpress multiple mammary lineage markers. Gene expression, transplantation, and in vitro analyses reveal putative autocrine and paracrine regulatory mechanisms, including ErbB and FGF signaling pathways impinging on fMaSC growth. Expression profiles from fMaSCs and associated stroma exhibit significant similarities to basal-like and Her2+ intrinsic breast cancer subtypes. Our results reveal links between development and cancer and provide resources to identify new candidates for diagnosis, prognosis, and therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures

Hideaki Mizuno; Benjamin T. Spike; Geoffrey M. Wahl; Arnold J. Levine

Breast cancer comprises a heterogeneous set of diseases distinguishable from one another by pathologic presentation and molecular signatures. However, each breast cancer subtype is also heterogeneous. Some of the heterogeneity may be attributable to genetic instability, but recent data emphasize that developmental plasticity may also contribute. The p53 tumor suppressor could constitute a nodal control point underlying both sources of heterogeneity because it is frequently inactivated during malignant progression and has recently been shown to function as a potent barrier preventing fully differentiated cells from reverting to pluripotent stem cells after expression of appropriate oncogenes. Using archival microarray datasets, we tested the hypothesis that a p53 mutation could allow cells within a tumor to acquire a stem cell-like state by looking for coordinate expression of stem cell identity genes. We show that breast and lung cancers with p53 mutations do exhibit stem cell-like transcriptional patterns. Such tumors were also depleted for differentiation genes regulated by the polycomb repressor complex 2. These data are consistent with a model in which loss of p53 function enables acquisition of stem cell properties, which are positively selected during tumor progression.


Genes & Cancer | 2011

p53, Stem Cells, and Reprogramming Tumor Suppression beyond Guarding the Genome

Benjamin T. Spike; Geoffrey M. Wahl

p53 is well recognized as a potent tumor suppressor. In its classic role, p53 responds to genotoxic insults by inducing cell cycle exit or programmed cell death to limit the propagation of cells with corrupted genomes. p53 is also implicated in a variety of other cellular processes in which its involvement is less well understood including self-renewal, differentiation, and reprogramming. These activities represent an emerging area of intense interest for cancer biologists, as they provide potential mechanistic links between p53 loss and the stem cell-like cellular plasticity that has been suggested to contribute to tumor cell heterogeneity and to drive tumor progression. Despite accumulating evidence linking p53 loss to stem-like phenotypes in cancer, it is not yet understood how p53 contributes to acquisition of stemness at the molecular level. Whether and how stem-like cells confer survival advantages to propagate the tumor also remain to be resolved. Furthermore, although it seems reasonable that the combination of p53 deficiency and the stem-like state could contribute to the genesis of cancers that are refractory to treatment, direct linkages and mechanistic underpinnings remain under investigation. Here, we discuss recent findings supporting the connection between p53 loss and the emergence of tumor cells bearing functional and molecular similarities to stem cells. We address several potential molecular and cellular mechanisms that may contribute to this link, and we discuss implications of these findings for the way we think about cancer progression.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis

Abhinav Diwan; Andrew G. Koesters; Amy Odley; Suvarnamala Pushkaran; Christopher P. Baines; Benjamin T. Spike; Diedre Daria; Anil G. Jegga; Hartmut Geiger; Bruce J. Aronow; Jeffery D. Molkentin; Kay F. Macleod; Theodosia A. Kalfa; Gerald W. Dorn

Normal production of RBCs requires that the antiapoptotic protein Bcl-xl be induced at end stages of differentiation in response to erythropoietin (Epo) signaling. The critical proapoptotic pathways inhibited by Bcl-xl in erythroblasts are unknown. We used gene targeting in the mouse to evaluate the BH3-only factor Nix, which is transcriptionally up-regulated during Epo-stimulated in vitro erythrocyte differentiation. Nix null mice are viable and fertile. Peripheral blood counts revealed a profound reticulocytosis and thrombocytosis despite normal serum Epo levels and blood oxygen tension. Nix null mice exhibited massive splenomegaly, with splenic and bone marrow erythroblastosis and reduced apoptosis in vivo during erythrocyte maturation. Hematopoietic progenitor populations were unaffected. Cultured Nix null erythroid cells were hypersensitive to Epo and resistant to apoptosis stimulated by cytokine deprivation and calcium ionophore. Transcriptional profiling of Nix null spleens revealed increased expression of cell cycle and erythroid genes, including Bcl-xl, and diminished expression of cell death and B cell-related genes. Thus, cell-autonomous Nix-mediated apoptosis in opposition to the Epo-induced erythroblast survival pathway appears indispensable for regulation of erythrocyte production and maintenance of hematological homeostasis. These results suggest that physiological codependence and coordinated regulation of pro- and antiapoptotic Bcl2 family members may represent a general regulatory paradigm in hematopoiesis.


The EMBO Journal | 2004

The Rb tumor suppressor is required for stress erythropoiesis

Benjamin T. Spike; Alexandra Dirlam; Benjamin Dibling; James Marvin; Bart O. Williams; Tyler Jacks; Kay F. Macleod

The retinoblastoma tumor suppressor gene plays important roles in cell cycle control, differentiation and survival during development and is functionally inactivated in most human cancers. Early studies using gene targeting in mice suggested a critical role for pRb in erythropoiesis, while more recent experiments have suggested that many of the abnormal embryonic phenotypes in the Rb null mouse result from a defective placenta. To address this controversy and determine whether Rb has cell intrinsic functions in erythropoiesis, we examined the effects of Rb loss on red cell production following acute deletion of pRb in vitro and under different stress conditions in vivo. Under stress conditions, pRb was required to regulate erythroblast expansion and promote red cell enucleation. Acute deletion of Rb in vitro induced erythroid cell cycle and differentiation defects similar to those observed in vivo. These results demonstrate a cell intrinsic role for pRb in stress erythropoiesis and hematopoietic homeostasis that has relevance for human diseases.


Genome Biology | 2013

Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts

Adam D. Pfefferle; Jason I. Herschkowitz; Jerry Usary; Joshua Chuck Harrell; Benjamin T. Spike; Jessica R. Adams; Maria I. Torres-Arzayus; Myles Brown; Sean E. Egan; Geoffrey M. Wahl; Jeffrey M. Rosen; Charles M. Perou

BackgroundHuman breast cancer is a heterogeneous disease consisting of multiple molecular subtypes. Genetically engineered mouse models are a useful resource for studying mammary cancers in vivo under genetically controlled and immune competent conditions. Identifying murine models with conserved human tumor features will facilitate etiology determinations, highlight the effects of mutations on pathway activation, and should improve preclinical drug testing.ResultsTranscriptomic profiles of 27 murine models of mammary carcinoma and normal mammary tissue were determined using gene expression microarrays. Hierarchical clustering analysis identified 17 distinct murine subtypes. Cross-species analyses using three independent human breast cancer datasets identified eight murine classes that resemble specific human breast cancer subtypes. Multiple models were associated with human basal-like tumors including TgC3(1)-Tag, TgWAP-Myc and Trp53-/-. Interestingly, the TgWAPCre-Etv6 model mimicked the HER2-enriched subtype, a group of human tumors without a murine counterpart in previous comparative studies. Gene signature analysis identified hundreds of commonly expressed pathway signatures between linked mouse and human subtypes, highlighting potentially common genetic drivers of tumorigenesis.ConclusionsThis study of murine models of breast carcinoma encompasses the largest comprehensive genomic dataset to date to identify human-to-mouse disease subtype counterparts. Our approach illustrates the value of comparisons between species to identify murine models that faithfully mimic the human condition and indicates that multiple genetically engineered mouse models are needed to represent the diversity of human breast cancers. The reported trans-species associations should guide model selection during preclinical study design to ensure appropriate representatives of human disease subtypes are used.


Molecular and Cellular Biology | 2007

Deregulated E2f-2 Underlies Cell Cycle and Maturation Defects in Retinoblastoma Null Erythroblasts

Alexandra Dirlam; Benjamin T. Spike; Kay F. Macleod

ABSTRACT By assessing the contribution of deregulated E2F activity to erythroid defects in Rb null mice, we have identified E2f-2 as being upregulated in end-stage red cells, where we show it is the major pRb-associated E2f and the predominant E2f detected at key target gene promoters. Consistent with its expression pattern, E2f-2 loss restored terminal erythroid maturation to Rb null red cells, including the ability to undergo enucleation. Deletion of E2f-2 also extended the life span of Rb null mice despite persistent defects in placental development, indicating that deregulated E2f-2 activity in differentiating erythroblasts contributes to the premature lethality of Rb null mice. We show that the aberrant entry of Rb null erythroblasts into S phase at times in differentiation when wild-type erythroblasts are exiting the cell cycle is inhibited by E2f-2 deletion. E2f-2 loss induced cell cycle arrest in both wild-type and Rb null erythroblasts and was associated with increased DNA double-strand breaks. These results implicate deregulated E2f-2 in the cell cycle defects observed in Rb null erythroblasts and reveal a novel role for E2f-2 during terminal red blood cell differentiation. The identification of a tissue-restricted role for E2f-2 in erythropoiesis highlights the nonredundant nature of E2f transcription factor activities in cell growth and differentiation.

Collaboration


Dive into the Benjamin T. Spike's collaboration.

Top Co-Authors

Avatar

Geoffrey M. Wahl

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter C. Gray

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Christopher Dravis

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Justin La

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samantha K. Cheung

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Charles M. Perou

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Dannielle D. Engle

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Evan Booker

Salk Institute for Biological Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge