Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey Schoenbaum is active.

Publication


Featured researches published by Geoffrey Schoenbaum.


Nature Neuroscience | 1998

Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning

Geoffrey Schoenbaum; Andrea A. Chiba; Michela Gallagher

Reciprocal connections between the orbitofrontal cortex and the basolateral nucleus of the amygdala may provide a critical circuit for the learning that underlies goal-directed behavior. We examined neural activity in rat orbitofrontal cortex and basolateral amygdala during instrumental learning in an olfactory discrimination task. Neurons in both regions fired selectively during the anticipation of rewarding or aversive outcomes. This selective activity emerged early in training, before the rats had learned reliably to avoid the aversive outcome. The results support the concept that the basolateral amygdala and orbitofrontal cortex cooperate to encode information that may be used to guide goal-directed behavior.


The Journal of Neuroscience | 1999

Neural Encoding in Orbitofrontal Cortex and Basolateral Amygdala during Olfactory Discrimination Learning

Geoffrey Schoenbaum; Andrea A. Chiba; Michela Gallagher

Orbitofrontal cortex (OFC) is part of a network of structures involved in adaptive behavior and decision making. Interconnections between OFC and basolateral amygdala (ABL) may be critical for encoding the motivational significance of stimuli used to guide behavior. Indeed, much research indicates that neurons in OFC and ABL fire selectively to cues based on their associative significance. In the current study recordings were made in each region within a behavioral paradigm that allowed comparison of the development of associative encoding over the course of learning. In each recording session, rats were presented with novel odors that were informative about the outcome of making a response and had to learn to withhold a response after sampling an odor that signaled a negative outcome. In some cases, reversal training was performed in the same session as the initial learning. Ninety-six of the 328 neurons recorded in OFC and 60 of the 229 neurons recorded in ABL exhibited selective activity during evaluation of the odor cues after learning had occurred. A substantial proportion of those neurons in ABL developed selective activity very early in training, and many reversed selectivity rapidly after reversal. In contrast, those neurons in OFC rarely exhibited selective activity during odor evaluation before the rats reached the criterion for learning, and far fewer reversed selectivity after reversal. The findings support a model in which ABL encodes the motivational significance of cues and OFC uses this information in the selection and execution of an appropriate behavioral strategy.


The Journal of Neuroscience | 1999

Orbitofrontal Cortex and Representation of Incentive Value in Associative Learning

Michela Gallagher; Robert W. McMahan; Geoffrey Schoenbaum

Clinical evidence indicates that damage to ventromedial prefrontal cortex disrupts goal-directed actions that are guided by motivational and emotional factors. As a consequence, patients with such damage characteristically engage in maladaptive behaviors. Other research has shown that neurons in the corresponding orbital region of prefrontal cortex in laboratory animals encode information regarding the incentive properties of goals or expected events. The present study investigates the effect of neurotoxic orbitofrontal cortex (OFC) lesions in the rat on responses that are normally influenced by associations between a conditioned stimulus (CS) and the incentive value of reinforcement. Rats were first trained to associate a visual CS with delivery of food pellets to a food cup. As a consequence of learning, rats approached the food cup during the CS in anticipation of reinforcement. In a second training phase, injection of LiCl followed consumption of the food unconditioned stimulus (US) in the home cage, a procedure used to alter the incentive value of the US. Subsequently, rats were returned to the conditioning chamber, and their responding to the CS in the absence of the food US was tested. Lesions of OFC did not affect either the initial acquisition of a conditioned response to the light CS in the first training phase or taste aversion learning in the second training phase. In the test for devaluation, however, OFC rats exhibited no change in conditioned responding to the visual CS. This outcome contrasts with the behavior of control rats; after devaluation of the US a significant decrease occurred in approach to the food cup during presentation of the CS. The results reveal an inability of a cue to access representational information about the incentive value of associated reinforcement after OFC damage.


Nature Neuroscience | 2007

Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards.

Matthew R. Roesch; Donna J. Calu; Geoffrey Schoenbaum

The dopamine system is thought to be involved in making decisions about reward. Here we recorded from the ventral tegmental area in rats learning to choose between differently delayed and sized rewards. As expected, the activity of many putative dopamine neurons reflected reward prediction errors, changing when the value of the reward increased or decreased unexpectedly. During learning, neural responses to reward in these neurons waned and responses to cues that predicted reward emerged. Notably, this cue-evoked activity varied with size and delay. Moreover, when rats were given a choice between two differently valued outcomes, the activity of the neurons initially reflected the more valuable option, even when it was not subsequently selected.


Nature Reviews Neuroscience | 2009

A new perspective on the role of the orbitofrontal cortex in adaptive behaviour

Geoffrey Schoenbaum; Matthew R. Roesch; Thomas A. Stalnaker; Yuji Takahashi

The orbitofrontal cortex (OFC) is crucial for changing established behaviour in the face of unexpected outcomes. This function has been attributed to the role of the OFC in response inhibition or to the idea that the OFC is a rapidly flexible associative-learning area. However, recent data contradict these accounts, and instead suggest that the OFC is crucial for signalling outcome expectancies. We suggest that this function — signalling of expected outcomes — can also explain the crucial role of the OFC in changing behaviour in the face of unexpected outcomes.


Neuron | 2003

Encoding Predicted Outcome and Acquired Value in Orbitofrontal Cortex during Cue Sampling Depends upon Input from Basolateral Amygdala

Geoffrey Schoenbaum; Barry Setlow; Michael P. Saddoris; Michela Gallagher

Certain goal-directed behaviors depend critically upon interactions between orbitofrontal cortex (OFC) and basolateral amygdala (ABL). Here we describe direct neurophysiological evidence of this cooperative function. We recorded from OFC in intact and ABL-lesioned rats learning odor discrimination problems. As rats learned these problems, we found that lesioned rats exhibited marked changes in the information represented in OFC during odor cue sampling. Lesioned rats had fewer cue-selective neurons in OFC after learning; the cue-selective population in lesioned rats did not include neurons that were also responsive in anticipation of the predicted outcome; and the cue-activated representations that remained in lesioned rats were less associative and more often bound to cue identity. The results provide a neural substrate for representing acquired value and features of the predicted outcome during cue sampling, disruption of which could account for deficits in goal-directed behavior after damage to this system.


Neuron | 2005

Orbitofrontal Cortex, Associative Learning, and Expectancies

Geoffrey Schoenbaum; Matthew R. Roesch

Orbitofrontal cortex is characterized by its unique pattern of connections with subcortical areas, such as basolateral amygdala. Here we distinguish between the critical role of these areas in associative learning and the pivotal contribution of OFC to the manipulation of this information to control behavior. This contribution reflects the ability of OFC to signal the desirability of expected outcomes, which requires the integration of associative information with information concerning internal states and goals in representational memory.


The Journal of Neuroscience | 2003

Different Roles for Orbitofrontal Cortex and Basolateral Amygdala in a Reinforcer Devaluation Task

Charles L. Pickens; Michael P. Saddoris; Barry Setlow; Michela Gallagher; Peter C. Holland; Geoffrey Schoenbaum

The orbitofrontal cortex (OFC) and basolateral amygdala (BLA) are critical for using learned representations of outcomes to guide behavior. Neurophysiological findings suggest complementary roles in which the BLA acquires associations between cues and outcomes and the OFC subsequently uses them to guide behavior. Here, we have used a reinforcer devaluation paradigm to test this hypothesis. In this paradigm, rats are first trained to associate a light conditioned stimulus (CS) with a food outcome, and then the food is devalued by pairing it with illness. After this devaluation procedure, responding to the CS is assessed in a single probe session. Previously, we have shown that BLA and OFC lesions made before training do not affect the acquisition of conditioned responding but do impair the sensitivity of that responding to reinforcer devaluation. Rats with such lesions fail to exhibit the spontaneous decrease in conditioned responding to the light cue observed in controls in the probe test. Here, we have extended those findings by showing that performance in the probe test is impaired by OFC lesions made after light-food conditioning but not by BLA lesions made after that training. These findings indicate that the OFC and BLA play different roles in mediating normal goal-directed performance in this, and likely other, settings. The BLA seems critical to forming representations linking cues to the incentive properties of outcomes but not for maintaining these representations in memory, updating them with new information, or for expressing them in behavior. In contrast, the OFC seems essential for one or more of these latter processes.


Trends in Neurosciences | 2006

Orbitofrontal cortex, decision-making and drug addiction

Geoffrey Schoenbaum; Matthew R. Roesch; Thomas A. Stalnaker

The orbitofrontal cortex, as a part of prefrontal cortex, is implicated in executive function. However, within this broad region, the orbitofrontal cortex is distinguished by its unique pattern of connections with crucial subcortical associative learning nodes, such as basolateral amygdala and nucleus accumbens. By virtue of these connections, the orbitofrontal cortex is uniquely positioned to use associative information to project into the future, and to use the value of perceived or expected outcomes to guide decisions. This review will discuss recent evidence that supports this proposal and will examine evidence that loss of this signal, as the result of drug-induced changes in these brain circuits, might account for the maladaptive decision-making that characterizes drug addiction.


Neuroreport | 2002

Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations.

Geoffrey Schoenbaum; Summer L. Nugent; Michael P. Saddoris; Barrry Setlow

Recent evidence suggests that orbitofrontal cortex lesions cause an inability to withhold inappropriate responses particularly when learned behavior must be modified to reflect changes in the likely outcome or consequence of responding. By this account, orbitofrontal cortex should not be necessary for acquisition of simple discrimination problems, but should be critical for acquiring reversals of those problems. However, previous work in rats has shown orbitofrontal cortex to be critical for withholding responses even in a simple go, no-go discrimination task. Here we have reexamined the contribution of rat orbitofrontal cortex to acquisition and reversal of go, no-go odor discrimination problems. Contrary to prior reports, we found that rats with lesions of the orbitofrontal cortex acquired novel discrimination problems at the same rate as controls. Impairments were evident in lesioned rats when the response contingencies of the odors in the discrimination problem were reversed. These findings suggest that orbitofrontal cortex is not necessary for inhibiting responses unless responses must be altered to reflect changing relationships between cues and outcomes.

Collaboration


Dive into the Geoffrey Schoenbaum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yael Niv

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa J. Sharpe

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Yavin Shaham

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge