Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yael Niv is active.

Publication


Featured researches published by Yael Niv.


Nature Neuroscience | 2005

Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control

Nathaniel D. Daw; Yael Niv; Peter Dayan

A broad range of neural and behavioral data suggests that the brain contains multiple systems for behavioral choice, including one associated with prefrontal cortex and another with dorsolateral striatum. However, such a surfeit of control raises an additional choice problem: how to arbitrate between the systems when they disagree. Here, we consider dual-action choice systems from a normative perspective, using the computational theory of reinforcement learning. We identify a key trade-off pitting computational simplicity against the flexible and statistically efficient use of experience. The trade-off is realized in a competition between the dorsolateral striatal and prefrontal systems. We suggest a Bayesian principle of arbitration between them according to uncertainty, so each controller is deployed when it should be most accurate. This provides a unifying account of a wealth of experimental evidence about the factors favoring dominance by either system.


Psychopharmacology | 2007

Tonic dopamine: opportunity costs and the control of response vigor

Yael Niv; Nathaniel D. Daw; Daphna Joel; Peter Dayan

RationaleDopamine neurotransmission has long been known to exert a powerful influence over the vigor, strength, or rate of responding. However, there exists no clear understanding of the computational foundation for this effect; predominant accounts of dopamine’s computational function focus on a role for phasic dopamine in controlling the discrete selection between different actions and have nothing to say about response vigor or indeed the free-operant tasks in which it is typically measured.ObjectivesWe seek to accommodate free-operant behavioral tasks within the realm of models of optimal control and thereby capture how dopaminergic and motivational manipulations affect response vigor.MethodsWe construct an average reward reinforcement learning model in which subjects choose both which action to perform and also the latency with which to perform it. Optimal control balances the costs of acting quickly against the benefits of getting reward earlier and thereby chooses a best response latency.ResultsIn this framework, the long-run average rate of reward plays a key role as an opportunity cost and mediates motivational influences on rates and vigor of responding. We review evidence suggesting that the average reward rate is reported by tonic levels of dopamine putatively in the nucleus accumbens.ConclusionsOur extension of reinforcement learning models to free-operant tasks unites psychologically and computationally inspired ideas about the role of tonic dopamine in striatum, explaining from a normative point of view why higher levels of dopamine might be associated with more vigorous responding.


Cognition | 2009

Hierarchically Organized Behavior and Its Neural Foundations: A Reinforcement Learning Perspective.

Matthew Botvinick; Yael Niv; Andrew C. Barto

Research on human and animal behavior has long emphasized its hierarchical structure-the divisibility of ongoing behavior into discrete tasks, which are comprised of subtask sequences, which in turn are built of simple actions. The hierarchical structure of behavior has also been of enduring interest within neuroscience, where it has been widely considered to reflect prefrontal cortical functions. In this paper, we reexamine behavioral hierarchy and its neural substrates from the point of view of recent developments in computational reinforcement learning. Specifically, we consider a set of approaches known collectively as hierarchical reinforcement learning, which extend the reinforcement learning paradigm by allowing the learning agent to aggregate actions into reusable subroutines or skills. A close look at the components of hierarchical reinforcement learning suggests how they might map onto neural structures, in particular regions within the dorsolateral and orbital prefrontal cortex. It also suggests specific ways in which hierarchical reinforcement learning might provide a complement to existing psychological models of hierarchically structured behavior. A particularly important question that hierarchical reinforcement learning brings to the fore is that of how learning identifies new action routines that are likely to provide useful building blocks in solving a wide range of future problems. Here and at many other points, hierarchical reinforcement learning offers an appealing framework for investigating the computational and neural underpinnings of hierarchically structured behavior.


The Journal of Neuroscience | 2008

From Fear to Safety and Back: Reversal of Fear in the Human Brain

Daniela Schiller; Ifat Levy; Yael Niv; Joseph E. LeDoux; Elizabeth A. Phelps

Fear learning is a rapid and persistent process that promotes defense against threats and reduces the need to relearn about danger. However, it is also important to flexibly readjust fear behavior when circumstances change. Indeed, a failure to adjust to changing conditions may contribute to anxiety disorders. A central, yet neglected aspect of fear modulation is the ability to flexibly shift fear responses from one stimulus to another if a once-threatening stimulus becomes safe or a once-safe stimulus becomes threatening. In these situations, the inhibition of fear and the development of fear reactions co-occur but are directed at different targets, requiring accurate responding under continuous stress. To date, research on fear modulation has focused mainly on the shift from fear to safety by using paradigms such as extinction, resulting in a reduction of fear. The aim of the present study was to track the dynamic shifts from fear to safety and from safety to fear when these transitions occur simultaneously. We used functional neuroimaging in conjunction with a fear-conditioning reversal paradigm. Our results reveal a unique dissociation within the ventromedial prefrontal cortex between a safe stimulus that previously predicted danger and a “naive” safe stimulus. We show that amygdala and striatal responses tracked the fear-predictive stimuli, flexibly flipping their responses from one predictive stimulus to another. Moreover, prediction errors associated with reversal learning correlated with striatal activation. These results elucidate how fear is readjusted to appropriately track environmental changes, and the brain mechanisms underlying the flexible control of fear.


Current Opinion in Neurobiology | 2008

Reinforcement learning: The Good, The Bad and The Ugly

Peter Dayan; Yael Niv

Reinforcement learning provides both qualitative and quantitative frameworks for understanding and modeling adaptive decision-making in the face of rewards and punishments. Here we review the latest dispatches from the forefront of this field, and map out some of the territories where lie monsters.


Neural Networks | 2006

The misbehavior of value and the discipline of the will

Peter Dayan; Yael Niv; Ben Seymour; Nathaniel D. Daw

Most reinforcement learning models of animal conditioning operate under the convenient, though fictive, assumption that Pavlovian conditioning concerns prediction learning whereas instrumental conditioning concerns action learning. However, it is only through Pavlovian responses that Pavlovian prediction learning is evident, and these responses can act against the instrumental interests of the subjects. This can be seen in both experimental and natural circumstances. In this paper we study the consequences of importing this competition into a reinforcement learning context, and demonstrate the resulting effects in an omission schedule and a maze navigation task. The misbehavior created by Pavlovian values can be quite debilitating; we discuss how it may be disciplined.


Neuron | 2014

Orbitofrontal Cortex as a Cognitive Map of Task Space

Robert C. Wilson; Yuji Takahashi; Geoffrey Schoenbaum; Yael Niv

Orbitofrontal cortex (OFC) has long been known to play an important role in decision making. However, the exact nature of that role has remained elusive. Here, we propose a unifying theory of OFC function. We hypothesize that OFC provides an abstraction of currently available information in the form of a labeling of the current task state, which is used for reinforcement learning (RL) elsewhere in the brain. This function is especially critical when task states include unobservable information, for instance, from working memory. We use this framework to explain classic findings in reversal learning, delayed alternation, extinction, and devaluation as well as more recent findings showing the effect of OFC lesions on the firing of dopaminergic neurons in ventral tegmental area (VTA) in rodents performing an RL task. In addition, we generate a number of testable experimental predictions that can distinguish our theory from other accounts of OFC function.


Trends in Cognitive Sciences | 2008

Dialogues on prediction errors.

Yael Niv; Geoffrey Schoenbaum

The recognition that computational ideas from reinforcement learning are relevant to the study of neural circuits has taken the cognitive neuroscience community by storm. A central tenet of these models is that discrepancies between actual and expected outcomes can be used for learning. Neural correlates of such prediction-error signals have been observed now in midbrain dopaminergic neurons, striatum, amygdala and even prefrontal cortex, and models incorporating prediction errors have been invoked to explain complex phenomena such as the transition from goal-directed to habitual behavior. Yet, like any revolution, the fast-paced progress has left an uneven understanding in its wake. Here, we provide answers to ten simple questions about prediction errors, with the aim of exposing both the strengths and the limitations of this active area of neuroscience research.


Nature Neuroscience | 2013

The effects of neural gain on attention and learning

Eran Eldar; Jonathan D. Cohen; Yael Niv

Attention is commonly thought to be manifest through local variations in neural gain. However, what would be the effects of brain-wide changes in gain? We hypothesized that global fluctuations in gain modulate the breadth of attention and the degree to which processing is focused on aspects of the environment to which one is predisposed to attend. We found that measures of pupil diameter, which are thought to track levels of locus coeruleus norepinephrine activity and neural gain, were correlated with the degree to which learning was focused on stimulus dimensions that individual human participants were more predisposed to process. In support of our interpretation of this effect in terms of global changes in gain, we found that the measured pupillary and behavioral variables were strongly correlated with global changes in the strength and clustering of functional connectivity, as brain-wide fluctuations of gain would predict.


Nature Neuroscience | 2011

Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex

Yuji Takahashi; Matthew R. Roesch; Robert C. Wilson; Kathy Toreson; Patricio O'Donnell; Yael Niv; Geoffrey Schoenbaum

The orbitofrontal cortex has been hypothesized to carry information regarding the value of expected rewards. Such information is essential for associative learning, which relies on comparisons between expected and obtained reward for generating instructive error signals. These error signals are thought to be conveyed by dopamine neurons. To test whether orbitofrontal cortex contributes to these error signals, we recorded from dopamine neurons in orbitofrontal-lesioned rats performing a reward learning task. Lesions caused marked changes in dopaminergic error signaling. However, the effect of lesions was not consistent with a simple loss of information regarding expected value. Instead, without orbitofrontal input, dopaminergic error signals failed to reflect internal information about the impending response that distinguished externally similar states leading to differently valued future rewards. These results are consistent with current conceptualizations of orbitofrontal cortex as supporting model-based behavior and suggest an unexpected role for this information in dopaminergic error signaling.

Collaboration


Dive into the Yael Niv's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey Schoenbaum

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Dayan

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eran Eldar

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa J. Sharpe

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge