Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffry L. Curran is active.

Publication


Featured researches published by Geoffry L. Curran.


Neurobiology of Disease | 2002

Molecular targeting of Alzheimer's amyloid plaques for contrast-enhanced magnetic resonance imaging.

Joseph F. Poduslo; Thomas M. Wengenack; Geoffry L. Curran; Thomas Wisniewski; Einar M. Sigurdsson; Slobodon I. Macura; Bret Borowski; Clifford R. Jack

Smart molecular probes for both diagnostic and therapeutic purposes are expected to provide significant advances in clinical medicine and biomedical research. We describe such a probe that targets beta-amyloid plaques of Alzheimers disease and is detectable by magnetic resonance imaging (MRI) because of contrast imparted by gadolinium labeling. Three properties essential for contrast enhancement of beta-amyloid plaques on MRI exist in this smart molecular probe, putrescine-gadolinium-amyloid-beta peptide: (1) transport across the blood-brain barrier following intravenous injection conferred by the polyamine moiety, (2) binding to plaques with molecular specificity by putrescine-amyloid-beta, and (3) magnetic resonance imaging contrast by gadolinium. MRI was performed on ex vivo tissue specimens at 7 T at a spatial resolution approximating plaque size (62.5 microm(3)), in order to prove the concept that the probe, when administered intravenously, can selectively enhance plaques. The plaque-to-background tissue contrast-to-noise ratio, which was precisely correlated with histologically stained plaques, was enhanced more than nine-fold in regions of cortex and hippocampus following intravenous administration of this probe in AD transgenic mice. Continuing engineering efforts to improve spatial resolution are underway in MRI, which may enable in vivo imaging at the resolution of individual plaques with this or similar contrast probes. This could enable early diagnosis and also provide a direct measure of the efficacy of anti-amyloid therapies currently being developed.


Acta neuropathologica communications | 2016

An autoradiographic evaluation of AV-1451 Tau PET in dementia

Val J. Lowe; Geoffry L. Curran; Ping Fang; Amanda M. Liesinger; Keith A. Josephs; Joseph E. Parisi; Kejal Kantarci; Bradley F. Boeve; Mukesh K. Pandey; Tyler J. Bruinsma; David S. Knopman; David T. Jones; Leonard Petrucelli; Casey Cook; Neill R. Graff-Radford; Dennis W. Dickson; Ronald C. Petersen; Clifford R. Jack; Melissa E. Murray

BackgroundIt is essential to determine the specificity of AV-1451 PET for tau in brain imaging by using pathological comparisons. We performed autoradiography in autopsy-confirmed Alzheimer disease and other neurodegenerative disorders to evaluate the specificity of AV-1451 binding for tau aggregates.MethodsTissue samples were selected that had a variety of dementia-related neuropathologies including Alzheimer disease, primary age-related tauopathy, tangle predominant dementia, non-Alzheimer disease tauopathies, frontotemporal dementia, parkinsonism, Lewy body disease and multiple system atrophy (n = 38). Brain tissue sections were stained for tau, TAR DNA-binding protein-43, and α-synuclein and compared to AV-1451 autoradiography on adjacent sections.ResultsAV-1451 preferentially localized to neurofibrillary tangles, with less binding to areas enriched in neuritic pathology and less mature tau. The strength of AV-1451 binding with respect to tau isoforms in various neurodegenerative disorders was: 3R + 4R tau (e.g., AD) > 3R tau (e.g., Pick disease) or 4R tau. Only minimal binding of AV-1451 to TAR DNA-binding protein-43 positive regions was detected. No binding of AV-1451 to α-synuclein was detected. “Off-target” binding was seen in vessels, iron-associated regions, substantia nigra, calcifications in the choroid plexus, and leptomeningeal melanin.ConclusionsReduced AV-1451 binding in neuritic pathology compared to neurofibrillary tangles suggests that the maturity of tau pathology may affect AV-1451 binding and suggests complexity in AV-1451 binding. Poor association of AV-1451 with tauopathies that have preferential accumulation of either 4R tau or 3R tau suggests limited clinical utility in detecting these pathologies. In contrast, for disorders associated with 3R + 4R tau, such as Alzheimer disease, AV-1451 binds tau avidly but does not completely reflect the early stage tau progression suggested by Braak neurofibrillary tangle staging. AV-1451 binding to TAR DNA-binding protein-43 or TAR DNA-binding protein-43 positive regions can be weakly positive. Clinical use of AV-1451 will require a familiarity with distinct types of “off-target” binding.


Nature Biotechnology | 2000

Targeting Alzheimer amyloid plaques in vivo

Thomas M. Wengenack; Geoffry L. Curran; Joseph F. Poduslo

The only definitive diagnosis for Alzheimer disease (AD) at present is postmortem observation of neuritic plaques and neurofibrillary tangles in brain sections. Radiolabeled amyloid-β peptide (Aβ), which has been shown to label neuritic plaques in vitro, therefore could provide a diagnostic tool if it also labels neuritic plaques in vivo following intravenous injection. In this study, we show that the permeability of Aβ at the blood–brain barrier can be increased by at least twofold through covalent modification with the naturally occurring polyamine, putrescine. We also show that, following intravenous injection, radiolabeled, putrescine-modified Aβ labels amyloid deposits in vivo in a transgenic mouse model of AD, as well as in vitro in human AD brain sections. This technology, when applied to humans, may be used to detect plaques in vivo, allowing early diagnosis of the disease and therapeutic intervention before cognitive decline occurs.


Neurobiology of Disease | 2001

Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer's disease

Joseph F. Poduslo; Geoffry L. Curran; Thomas M. Wengenack; Brian Malester; Karen Duff

The permeability of albumin, insulin, and human A beta 1--40 at the blood-brain barrier (BBB) was determined in the normal adult mouse (B6/SJL) and in the double transgenic Alzheimer mouse (APP, PS1) by using an I.V. bolus injection technique to quantify the permeability coefficient-surface area (PS) product for each protein after correction for the residual plasma volume (V(p)) occupied by the protein in the blood vessels of different brain regions using a second aliquot of the same protein radiolabeled with a different isotope of iodine ((125)I vs (131)I) as a vascular space marker. This technology for quantifying BBB permeability of proteins was adapted from the rat to the mouse and involved catheterizing the femoral artery and vein of the mouse instead of the brachial artery and vein as for the rat. Because of the smaller blood volume in the mouse, serial sampling (20 microl) of blood from the femoral artery of the mouse was performed and directly TCA precipitated to generate a whole blood washout curve for the intact protein. When similar blood sampling techniques were used in the rat, the PS values for albumin and insulin at the BBB were similar in these two species. In the double transgenic mouse, the V(p) values for albumin were significantly increased 1.4- to 1.6-fold in five of six brain regions compared to the normal adult mouse, which indicated increased adherence of albumin to vessel walls. As a result, the PS values were significantly decreased, from 1.4- to 3.2-fold, which likely reflected decreased transport of albumin by passive diffusion. In contrast, insulin, which is taken up into the brain by a receptor-mediated transport mechanism at the BBB, showed no significant difference in the V(p) values but a significant increase in the PS values in four of six brain regions. This suggests a compensatory mechanism in the Alzheimers transgenic brain whereby there is an increased permeability to insulin at the BBB. Surprisingly, there was no significant difference in the V(p) or PS values for human A beta 1--40 at the BBB in the double transgenic Alzheimer mouse at 24, 32, or 52 weeks of age, when there is both significant A beta levels in the plasma and amyloid burden in the brains of these animals. These data suggest that there is not an alteration in permeability to human A beta 1--40 at the BBB with increasing amyloid burden in the double transgenic Alzheimer mouse. Although these observations suggest structural alterations at the BBB, they do not support the concept of extensive BBB damage with substantial increases in BBB permeability in Alzheimers disease.


Journal of Neurochemistry | 2002

Polyamine modification increases the permeability of proteins at the blood-nerve and blood-brain barriers

Joseph F. Poduslo; Geoffry L. Curran

Abstract: The permeability of the blood‐nerve barrier (BNB) and the blood‐brain barrier (BBB) to superoxide dismutase (SOD), insulin, albumin, and IgG in normal adult rats was quantified by measuring the permeability coefficient‐surface area product (PS) with the intravenous bolus injection technique before and after covalent protein modification with the naturally occurring polyamines—putrescine (PUT), spermidine (SPD), and spermine (SPM). The PS value of the BNB for PUT‐SOD was 21.1‐fold greater than the native SOD, and the PS values of the BBB for PUT‐SOD ranged from 17.6‐fold greater for the thalamus to 23.6‐fold greater for the caudate‐putamen compared with native SOD. In a similar manner, polyamine‐modified insulin showed a 1.7–2.0‐fold increase in PS of the BNB and BBB compared with the high values of native insulin. Polyamine‐modified albumin showed a remarkable 54–165‐fold increase in PS of the BNB and BBB compared with native albumin, whereas PUT‐IgG resulted in an even higher increase in the PS that ranged from 111‐ to 349‐fold for nerve and different brain regions compared with native IgG. Polyamine modification of proteins, therefore, can dramatically increase the permeability at the BNB and BBB of a variety of proteins with widely differing Mr and function. It is surprising that the PS values of the BNB and BBB decreased with the increasing number of positive charges of the protonated amino groups on the polyamines (PUT > SPD > SPM). Although cationic proteins are known to interact with fixed anionic charges on the lumen of the microvascular endothelium, this observation of decreased permeability with increased positive charge distribution along the aliphatic carbon chain of the polyamines implies mechanisms other than simple electrostatic interaction involving charge density. It is suggested that the polyamine transporter may be responsible for the transport of these polyamine‐modified proteins. Systemic administration of polyamine‐modified peptides and proteins might prove to be an efficient approach to deliver therapeutic agents into the CNS and PNS for the treatment of a variety of neurological diseases.


Journal of Neurobiology | 1999

β‐sheet breaker peptide inhibitor of Alzheimer's amyloidogenesis with increased blood–brain barrier permeability and resistance to proteolytic degradation in plasma

Joseph F. Poduslo; Geoffry L. Curran; Asok Kumar; Blas Frangione; Claudio Soto

Short synthetic peptides homologous to the central region of Abeta but bearing proline residues as beta-sheet blockers have been shown in vitro to bind to Abeta with high affinity, partially inhibit Abeta fibrillogenesis, and redissolve preformed fibrils. While short peptides have been used extensively as therapeutic drugs in medicine, two important problems associated with their use in central nervous system diseases have to be addressed: (a) rapid proteolytic degradation in plasma, and (b) poor blood-brain barrier (BBB) permeability. Recently, we have demonstrated that the covalent modification of proteins with the naturally occurring polyamines significantly increases their permeability at the BBB. We have extended this technology to iAbeta11, an 11-residue beta-sheet breaker peptide that inhibits Abeta fibrillogenesis, by covalently modifying this peptide with the polyamine, putrescine (PUT), and evaluating its plasma pharmacokinetics and BBB permeability. After a single intravenous bolus injection in rats, both 125I-YiAbeta11 and 125I-PUT-YiAbeta11 showed rapid degradation in plasma as determined by trichloroacetic acid (TCA) precipitation and paper chromatography. By switching to the all D-enantiomers of YiAbeta11 and PUT-YiAbeta11, significant protection from degradation by proteases in rat plasma was obtained with only 1.9% and 5.7% degradation at 15 min after intravenous bolus injection, respectively. The permeability coefficient x surface area product at the BBB was five- sevenfold higher in the cortex and hippocampus for the 125I-PUT-D-YiAbeta11 compared to the 125I-D-YiAbeta11, with no significant difference in the residual plasma volume. In vitro assays showed that PUT-D-YiAbeta11 retains its ability to partially inhibit Abeta fibrillogenesis and dissolve preformed amyloid fibrils. Because of its five- to sevenfold increase in permeability at the BBB and its resistance to proteolysis in the plasma, this polyamine-modified beta-sheet breaker peptide may prove to be an effective inhibitor of amyloidogenesis in vivo and, hence, an important therapy for Alzheimers disease.


Neuroscience | 2000

Quantitative histological analysis of amyloid deposition in Alzheimer's double transgenic mouse brain.

Thomas M. Wengenack; Shelly Whelan; Geoffry L. Curran; Karen Duff; Joseph F. Poduslo

The development of transgenic mice has created new opportunities for the generation of animal models of human neurodegenerative diseases where previously there was no animal counterpart. The first successful transgenic mouse model of Alzheimers disease expressed increased levels of mutant human amyloid precursor protein, exhibiting neuritic-type amyloid deposits and behavioral deficits at six to nine months of age. More recently, it was shown that transgenic mice expressing both mutant human amyloid precursor protein and presenilin 1 exhibit neuritic-type amyloid deposits and behavioral deficits in as little as 12 weeks. This accelerated Alzheimer phenotype greatly reduces the time necessary to conduct preclinical drug trials, as well as animal housing costs. The purpose of this study was to quantify the deposition of amyloid in five regions of the cortex and two regions of the hippocampus of transgenic mice expressing amyloid precursor protein (K670N, M671L) and presenilin 1 (M146L) mutations at various ages, using quantitative methods of confocal laser scanning microscopy and image analysis. Amyloid burden, expressed as the percentage area occupied by thioflavin S-positive amyloid deposits, increased an average of 179-fold from 12 to 54 weeks of age (0.02+/-0.01% to 3.57+/-0.29%, mean+/-S.E.M., respectively) in five regions of the cortex and two of the hippocampus. This was a function of increases in both deposit number and size. This transgenic mouse provides an ideal animal model for evaluating the efficacy of potential therapeutic agents aimed at reducing amyloid deposition, such as inhibitors of amyloid fibril formation or secretase inhibitors.


Pharmaceutical Research | 2008

Development of a Smart Nano-vehicle to Target Cerebrovascular Amyloid Deposits and Brain Parenchymal Plaques Observed in Alzheimer’s Disease and Cerebral Amyloid Angiopathy

Edward Agyare; Geoffry L. Curran; Muthu Ramakrishnan; Caroline C. Yu; Joseph F. Poduslo; Karunya K. Kandimalla

PurposeTo design a smart nano-vehicle (SNV) capable of permeating the blood-brain barrier (BBB) to target cerebrovascular amyloid formed in both Alzheimer’s disease (AD) and cerebrovascular amyloid angiopathy (CAA).MethodsSNV consists of a chitosan polymeric core prepared through ionic gelation with tripolyphosphate. A polyamine modified F(ab’) portion of IgG4.1, an anti-amyloid antibody, was coated as a biosensor on the SNV surface. A similar polymeric core coated with bovine serum albumin (BSA) served as a control nano-vehicle (CNV). The BBB uptake of 125I-SNVs and 125I-CNVs was evaluated in mice. The uptake and transcytosis of SNVs and CNVs across bovine brain microvascular endothelial cells (BBMECs) was evaluated using flow cytometry and confocal microscopy.ResultsPlasma clearance of 125I-SNVs was nine times higher than that of the 125I-CNVs. However, the uptake of 125I-SNVs in various brain regions was about 8 to 11 times higher than that of 125I-CNVs. The uptake of FITC-BSA loaded SNVs in BBMECs was twice the uptake of FITC-BSA loaded CNVs. Confocal micrographs demonstrated the uptake and transcytosis of Alexa Fluor 647 labeled SNVs, but not CNVs, across the BBMEC monolayer.ConclusionsSNVs are capable of carrying a payload of model protein across the BBB to target cerebral amyloid.


Journal of Neurochemistry | 2007

In vivo targeting of antibody fragments to the nervous system for Alzheimer’s disease immunotherapy and molecular imaging of amyloid plaques

Joseph F. Poduslo; Muthu Ramakrishnan; Silvina S. Holasek; Marina Ramirez-Alvarado; Karunya K. Kandimalla; Emily J. Gilles; Geoffry L. Curran; Thomas M. Wengenack

Targeting therapeutic or diagnostic proteins to the nervous system is limited by the presence of the blood–brain barrier. We report that a F(ab′)2 fragment of a monoclonal antibody against fibrillar human Aβ42 that is polyamine (p)‐modified has increased permeability at the blood–brain barrier, comparable binding to the antigen, and comparable in vitro binding to amyloid plaques in Alzheimer’s disease (AD) transgenic mouse brain sections. Intravenous injection of the pF(ab′)24.1 in the AD transgenic mouse demonstrated efficient targeting to amyloid plaques throughout the brain, whereas the unmodified fragment did not. Removal of the Fc portion of this antibody derivative will minimize the inflammatory response and cerebral hemorrhaging associated with passive immunization and provide increased therapeutic potential for treating AD. Coupling contrast agents/radioisotopes might facilitate the molecular imaging of amyloid plaques with magnetic resonance imaging/positron emission tomography. The efficient delivery of immunoglobulin G fragments may also have important applications to other neurodegenerative disorders or for the generalized targeting of nervous system antigens.


Brain Research | 2004

Activation of programmed cell death markers in ventral horn motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in a transgenic mouse model

Thomas M. Wengenack; Silvina S. Holasek; Carolina Montaño; Dawn M. Gregor; Geoffry L. Curran; Joseph F. Poduslo

The identification of the pathogenic mechanism of selective motor neuron (MN) death in amyotrophic lateral sclerosis (ALS) may lead to the development of new therapies to halt or slow the disease course. A novel, MN-specific, Fas-mediated programmed cell death (PCD) pathway has been reported in MNs which involves the activation of p38 MAP kinase (phospho-p38) and neuronal nitric oxide synthase (nNOS). PCD was found to be exacerbated in MNs expressing ALS-linked superoxide dismutase (SOD) mutations. Because this MN-specific pathway was investigated in vitro, we performed an in vivo study to evaluate its potential involvement in MN loss in the lumbar region of spinal cord of mutant SOD transgenic (G93A) mice. Compared to nontransgenic littermates, we found significant increases in the numbers of immunopositive ventral horn MNs of G93A mice as young as 60 days of age for several constituents of this putative PCD pathway, including phospho-p38, nNOS, phospho-ASK1 MAP kinase kinase, and active caspase-3. This study provides in vivo evidence of an MN-specific PCD pathway that may be a pathogenic mechanism of ALS and may be activated very early in the disease process, well before clinical symptoms are evident (200 days). These findings suggest that early diagnosis and therapeutic intervention may be critical for the successful treatment of the disease. These enzymes may provide new markers for earlier diagnosis of ALS and new molecular targets for therapeutic intervention.

Collaboration


Dive into the Geoffry L. Curran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge