Karunya K. Kandimalla
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karunya K. Kandimalla.
Current Medicinal Chemistry | 2000
Narayanasamy Kanikkannan; Karunya K. Kandimalla; S. S. Lamba; Mandip Singh
Transdermal drug delivery (TDD) is the administration of therapeutic agents through intact skin for systemic effect. TDD offers several advantages over the conventional dosage forms such as tablets, capsules and injections. Currently there are about eight drugs marketed as transdermal patches. Examples of such products include nitroglycerin (angina pectoris), clonidine (hypertension), scopolamine (motion sickness), nicotine (smoking cessation), fentanil (pain) and estradiol (estrogen deficiency). Since skin is an excellent barrier for drug transport, only potent drugs with appropriate physicochemical properties (low molecular weight, adequate solubility in aqueous and non-aqueous solvents, etc) are suitable candidates for transdermal delivery. Penetration enhancement technology is a challenging development that would increase significantly the number of drugs available for transdermal administration. The permeation of drugs through skin can be enhanced by physical methods such as iontophoresis (application of low level electric current) and phonophoresis (use of ultra sound energy) and by chemical penetration enhancers (CPE). In this review, we have discussed about the CPE which have been investigated for TDD. CPE are compounds that enhance the permeation of drugs across the skin. The CPE increase skin permeability by reversibly altering the physicochemical nature of the stratum corneum, the outer most layer of skin, to reduce its diffusional resistance. These compounds increase skin permeability also by increasing the partition coefficient of the drug into the skin and by increasing the thermodynamic activity of the drug in the vehicle. This review compiles the various CPE used for the enhancement of TDD, the mechanism of action of different chemical enhancers and the structure-activity relationship of selected and extensively studied enhancers such as fatty acids, fatty alcohols and terpenes. Based on the chemical structure of penetration enhancers (such as chain length, polarity, level of unsaturation and presence of some special groups such as ketones), the interaction between the stratum corneum and penetration enhancers may vary which will result in significant differences in penetration enhancement. Our review also discusses the various factors to be considered in the selection of an appropriate penetration enhancer for the development of transdermal delivery systems.
Pharmaceutical Research | 2008
Edward Agyare; Geoffry L. Curran; Muthu Ramakrishnan; Caroline C. Yu; Joseph F. Poduslo; Karunya K. Kandimalla
PurposeTo design a smart nano-vehicle (SNV) capable of permeating the blood-brain barrier (BBB) to target cerebrovascular amyloid formed in both Alzheimer’s disease (AD) and cerebrovascular amyloid angiopathy (CAA).MethodsSNV consists of a chitosan polymeric core prepared through ionic gelation with tripolyphosphate. A polyamine modified F(ab’) portion of IgG4.1, an anti-amyloid antibody, was coated as a biosensor on the SNV surface. A similar polymeric core coated with bovine serum albumin (BSA) served as a control nano-vehicle (CNV). The BBB uptake of 125I-SNVs and 125I-CNVs was evaluated in mice. The uptake and transcytosis of SNVs and CNVs across bovine brain microvascular endothelial cells (BBMECs) was evaluated using flow cytometry and confocal microscopy.ResultsPlasma clearance of 125I-SNVs was nine times higher than that of the 125I-CNVs. However, the uptake of 125I-SNVs in various brain regions was about 8 to 11 times higher than that of 125I-CNVs. The uptake of FITC-BSA loaded SNVs in BBMECs was twice the uptake of FITC-BSA loaded CNVs. Confocal micrographs demonstrated the uptake and transcytosis of Alexa Fluor 647 labeled SNVs, but not CNVs, across the BBMEC monolayer.ConclusionsSNVs are capable of carrying a payload of model protein across the BBB to target cerebral amyloid.
Journal of Neurochemistry | 2007
Joseph F. Poduslo; Muthu Ramakrishnan; Silvina S. Holasek; Marina Ramirez-Alvarado; Karunya K. Kandimalla; Emily J. Gilles; Geoffry L. Curran; Thomas M. Wengenack
Targeting therapeutic or diagnostic proteins to the nervous system is limited by the presence of the blood–brain barrier. We report that a F(ab′)2 fragment of a monoclonal antibody against fibrillar human Aβ42 that is polyamine (p)‐modified has increased permeability at the blood–brain barrier, comparable binding to the antigen, and comparable in vitro binding to amyloid plaques in Alzheimer’s disease (AD) transgenic mouse brain sections. Intravenous injection of the pF(ab′)24.1 in the AD transgenic mouse demonstrated efficient targeting to amyloid plaques throughout the brain, whereas the unmodified fragment did not. Removal of the Fc portion of this antibody derivative will minimize the inflammatory response and cerebral hemorrhaging associated with passive immunization and provide increased therapeutic potential for treating AD. Coupling contrast agents/radioisotopes might facilitate the molecular imaging of amyloid plaques with magnetic resonance imaging/positron emission tomography. The efficient delivery of immunoglobulin G fragments may also have important applications to other neurodegenerative disorders or for the generalized targeting of nervous system antigens.
PLOS ONE | 2009
Karunya K. Kandimalla; Olenych G. Scott; Smita Fulzele; Michael W. Davidson; Joseph F. Poduslo
Alzheimers disease (AD) is characterized by significant neurodegeneration in the cortex and hippocampus; intraneuronal tangles of hyperphosphorylated tau protein; and accumulation of β-amyloid (Aβ) proteins 40 and 42 in the brain parenchyma as well as in the cerebral vasculature. The current understanding that AD is initiated by the neuronal accumulation of Aβ proteins due to their inefficient clearance at the blood-brain-barrier (BBB), places the neurovascular unit at the epicenter of AD pathophysiology. The objective of this study is to investigate cellular mechanisms mediating the internalization of Aβ proteins in the principle constituents of the neurovascular unit, neurons and BBB endothelial cells. Laser confocal micrographs of wild type (WT) mouse brain slices treated with fluorescein labeled Aβ40 (F-Aβ40) demonstrated selective accumulation of the protein in a subpopulation of cortical and hippocampal neurons via nonsaturable, energy independent, and nonendocytotic pathways. This groundbreaking finding, which challenges the conventional belief that Aβ proteins are internalized by neurons via receptor mediated endocytosis, was verified in differentiated PC12 cells and rat primary hippocampal (RPH) neurons through laser confocal microscopy and flow cytometry studies. Microscopy studies have demonstrated that a significant proportion of F-Aβ40 or F-Aβ42 internalized by differentiated PC12 cells or RPH neurons is located outside of the endosomal or lysosomal compartments, which may accumulate without degradation. In contrast, BBME cells exhibit energy dependent uptake of F-Aβ40, and accumulate the protein in acidic cell organelle, indicative of endocytotic uptake. Such a phenomenal difference in the internalization of Aβ40 between neurons and BBB endothelial cells may provide essential clues to understanding how various cells can differentially regulate Aβ proteins and help explain the vulnerability of cortical and hippocampal neurons to Aβ toxicity.
Brain Research | 2005
Silvina S. Holasek; Thomas M. Wengenack; Karunya K. Kandimalla; Carolina Montaño; Dawn M. Gregor; Geoffry L. Curran; Joseph F. Poduslo
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, characterized by the degeneration of upper and lower motor neurons (MNs). Central nervous system features include a loss of Betz cells and other pyramidal cells from sensorimotor cortex. The intrinsic mechanism underlying this selective motor neuron loss has not been identified. A recent in vitro study has provided evidence of a novel programmed cell death (PCD) pathway that is unique to spinal cord MNs and is exacerbated by superoxide dismutase (SOD) mutations. This PCD pathway is triggered through the Fas receptor and involves the apoptosis signal-regulating kinase 1 (ASK1), the p38 MAP kinase, and the neuronal form of nitric oxide synthase (nNOS). Previously, we found significant increases in the numbers of ventral horn MNs immunopositive for these enzymes in the spinal cords of mutant SOD transgenic (G93A) mice as early as 60 days of age, suggesting that this pathway may be active in vivo. Since the upper MNs of ALS patients and G93A mice are also known to degenerate, the purpose of the present study was to investigate the possible activation of this PCD pathway in the MNs of the sensorimotor cortex of G93A transgenic mice. Compared to non-transgenic littermates, the G93A mice showed significant increases in the numbers of MNs immunopositive for the active (phosphorylated) forms of ASK1, p38, MKK3/6 (the known activator of p38), and also active caspase-3, as early as 60 days of age. Another stress-activated protein kinase, c-Jun N-terminal kinase (JNK), commonly activated in other neurodegenerative disorders such as Alzheimers disease, showed no increases in G93A mice at any age. These results suggest that, not only has a PCD pathway been activated in the cortical MNs, but one that may be unique to ALS. Moreover, these findings suggest that earlier diagnosis and therapeutic intervention may be possible for successful treatment of ALS. Consequently, these enzymes may provide the biochemical markers to enable earlier diagnosis of ALS and molecular targets for the development of new therapeutic compounds.
Journal of Pharmacy and Pharmacology | 1999
Karunya K. Kandimalla; Narayanasamy Kanikkannan; S. Andega; Mandip Singh
Transdermal delivery of melatonin would be advantageous in the treatment of sleep disorders considering the short biological half‐life of melatonin and its variable bioavailability via the oral route. This study looked at suitable penetration enhancers for the transdermal permeation of melatonin.
Journal of Controlled Release | 1999
Karunya K. Kandimalla; Narayanasamy Kanikkannan; Mandip Singh
The objective of this study was to optimize a suitable vehicle composition, using response surface method (RSM) and artificial neural networks (ANN), for the transdermal delivery of melatonin (MT). MT is a hormone produced by the pineal gland that influences mammalian sleep and reproductive patterns. A successful treatment for sleep disorders can be developed if MT is delivered with a rate at which it is produced in the body (endogenous rhythm). Prominent hepato-gastrointestinal first-pass metabolism and short half-life of MT in the body, limits the ability of oral route to mimic the endogenous rhythm. Transdermal route is supposed to avoid first-pass metabolism, and maintain steady-state plasma MT concentrations for a required period of time. However, MT by itself can not pass through the dense lipophilic matrix of stratum corneum. Hence solvents like water (W), ethanol (E), propylene glycol (P), their binary and ternary mixtures were employed to increase MT flux and reduce lag time. Special quartic model (RSM) and deltaW:P (50:50) were predicted as the effective vehicles. W:E:P was considered as the best vehicle, both in terms of flux (12.75 microg/cm(2) per h) and lag time (5 h). RSM and ANN prediction of the best mixtures coincided very well. The ability of these tools to summarize various responses (solubility, flux, and lag time) with respect to vehicle composition enabled us to study the inter-relativity between the responses.
Pharmaceutical Research | 2008
Muthu Ramakrishnan; Thomas M. Wengenack; Karunya K. Kandimalla; Geoffry L. Curran; Emily J. Gilles; Marina Ramirez-Alvarado; Joseph Lin; Michael Garwood; Clifford R. Jack; Joseph F. Poduslo
ABSTRACTPurposeThe lack of an in vivo diagnostic test for AD has prompted the targeting of amyloid plaques with diagnostic imaging probes. We describe the development of a contrast agent (CA) for magnetic resonance microimaging that utilizes the F(ab′)2 fragment of a monoclonal antibody raised against fibrillar human Aβ42MethodsThis fragment is polyamine modified to enhance its BBB permeability and its ability to bind to amyloid plaques. It is also conjugated with a chelator and gadolinium for subsequent imaging of individual amyloid plaquesResultsPharmacokinetic studies demonstrated this 125I-CA has higher BBB permeability and lower accumulation in the liver and kidney than F(ab′)2 in WT mice. The CA retains its ability to bind Aβ40/42 monomers/fibrils and also binds to amyloid plaques in sections of AD mouse brain. Intravenous injection of 125I-CA into the AD mouse demonstrates targeting of amyloid plaques throughout the cortex/hippocampus as detected by emulsion autoradiography. Incubation of AD mouse brain slices in vitro with this CA resulted in selective enhancement on T1-weighted spin-echo images, which co-register with individual plaques observed on spatially matched T2-weighted spin-echo imageConclusionsDevelopment of such a molecular probe is expected to open new avenues for the diagnosis of AD.
Nanomedicine: Nanotechnology, Biology and Medicine | 2012
Kristen M. Jaruszewski; Subramanian Ramakrishnan; Joseph F. Poduslo; Karunya K. Kandimalla
UNLABELLED Alzheimers disease amyloid β (Aβ) proteins accumulate in the cerebral vasculature and cause cerebral amyloid angiopathy (CAA). The objective of this study was to resolve critical formulation issues in developing nanoparticles (NPs) capable of permeating the blood brain barrier (BBB) and targeting cerebrovascular Aβ proteins. To achieve this objective we designed immuno-nanovehicles, which are chitosan-coated poly lactic-co-glycolic acid (PLGA) NPs conjugated with a novel anti-Aβ antibody. Measurements made according to Derjaguin-Landau-Verwey-Overbeek (DLVO) theory indicated that the immuno-nanovehicles have a much lower propensity to aggregate than the control nanovehicles. Immuno-nanovehicles showed enhanced uptake at the BBB and better targeting of the Aβ proteins deposited in the CAA model in vitro in comparison with the control nanovehicles. In addition, chitosan enhanced aqueous dispersibility and increased the stability of immuno-nanovehicles during lyophilization, thus transforming them into ideal vehicles for delivering therapeutic and diagnostic agents to the cerebral vasculature ridden with vascular amyloid. FROM THE CLINICAL EDITOR In this study, the authors report the development of chitosan-coated PLGA nanoparticles conjugated with anti-amyloid antibody to be used as immuno-nanovehicles to image cerebral amyloid angiopathy deposits in vivo. This method enables delivering therapeutic and diagnostic agents to the cerebral vasculature ridden with vascular amyloid.
PLOS ONE | 2010
Joseph F. Poduslo; Emily J. Gilles; Muthu Ramakrishnan; Kyle G. Howell; Thomas M. Wengenack; Geoffry L. Curran; Karunya K. Kandimalla
A key question in understanding AD is whether extracellular Aβ deposition of parenchymal amyloid plaques or intraneuronal Aβ accumulation initiates the AD process. Amyloid precursor protein (APP) is endocytosed from the cell surface into endosomes where it is cleaved to produce soluble Aβ which is then released into the brain interstitial fluid. Intraneuronal Aβ accumulation is hypothesized to predominate from the neuronal uptake of this soluble extracellular Aβ rather than from ER/Golgi processing of APP. We demonstrate that substitution of the two adjacent histidine residues of Aβ40 results in a significant decrease in its binding with PC12 cells and mouse cortical/hippocampal neurons. These substitutions also result in a dramatic enhancement of both thioflavin-T positive fibril formation and binding to preformed Aβ fibrils while maintaining its plaque-binding ability in AD transgenic mice. Hence, alteration of the histidine domain of Aβ prevented neuronal binding and drove Aβ to enhanced fibril formation and subsequent amyloid plaque deposition - a potential mechanism for removing toxic species of Aβ. Substitution or even masking of these Aβ histidine residues might provide a new therapeutic direction for minimizing neuronal uptake and subsequent neuronal degeneration and maximizing targeting to amyloid plaques.