Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georg A. Sprenger is active.

Publication


Featured researches published by Georg A. Sprenger.


Current Opinion in Chemical Biology | 2010

Recent progress in stereoselective synthesis with aldolases

Pere Clapés; Wolf-Dieter Fessner; Georg A. Sprenger; Anne K. Samland

Aldol reactions constitute a powerful methodology for carbon-carbon bond formation in synthetic organic chemistry. Biocatalysis by means of aldolases offers a unique stereoselective and green tool to perform this transformation. Recent advances in the field, fueled by either protein engineering or screening, greatly improved the number of synthetic opportunities from small chiral polyfunctional molecules to highly complex oligosaccharide analogs with potential pharmaceutical relevance. Furthermore, aldolases have been shown to be particularly valuable for obtaining new types of structures (i.e. generate molecular diversity) accessible for investigations in drug discovery. Extensive knowledge arising from biochemical studies and synthetic applications of natural aldolases has fostered the development of novel catalysts, such as the de novo computational design of aldolase enzymes, aldolase ribozymes, or synthetic peptides and foldamers with aldolase activity, outlining first steps toward the creation of tailor-made (bio)catalysts to suit any desired application.


Chemcatchem | 2013

Selective Catalytic Oxidation of CH Bonds with Molecular Oxygen

Emil Roduner; Wolfgang Kaim; Biprajit Sarkar; Vlada B. Urlacher; Jürgen Pleiss; Roger Gläser; Wolf-Dietrich Einicke; Georg A. Sprenger; Uwe Beifuß; Elias Klemm; Christian Liebner; Hartmut Hieronymus; Shih‐Fan Hsu; Bernd Plietker; Sabine Laschat

Although catalytic reductions, cross‐couplings, metathesis, and oxidation of CC double bonds are well established, the corresponding catalytic hydroxylations of CH bonds in alkanes, arenes, or benzylic (allylic) positions, particularly with O2, the cheapest, “greenest”, and most abundant oxidant, are severely lacking. Certainly, some promising examples in homogenous and heterogenous catalysis exist, as well as enzymes that can perform catalytic aerobic oxidations on various substrates, but these have never achieved an industrial‐scale, owing to a low space‐time‐yield and poor stability. This review illustrates recent advances in aerobic oxidation catalysis by discussing selected examples, and aims to stimulate further exciting work in this area. Theoretical work on catalyst precursors, resting states, and elementary steps, as well as model reactions complemented by spectroscopic studies provide detailed insight into the molecular mechanisms of oxidation catalyses and pave the way for preparative applications. However, O2 also poses a safety hazard, especially when used for large scale reactions, therefore sophisticated methodologies have been developed to minimize these risks and to allow convenient transfer onto industrial scale.


Applied Microbiology and Biotechnology | 2006

Microbial aldolases as C-C bonding enzymes--unknown treasures and new developments.

Anne K. Samland; Georg A. Sprenger

Aldolases are a specific group of lyases that catalyze the reversible stereoselective addition of a donor compound (nucleophile) onto an acceptor compound (electrophile). Whereas most aldolases are specific for their donor compound in the aldolization reaction, they often tolerate a wide range of aldehydes as acceptor compounds. C–C bonding by aldolases creates stereocenters in the resulting aldol products. This makes aldolases interesting tools for asymmetric syntheses of rare sugars or sugar-derived compounds as iminocyclitols, statins, epothilones, and sialic acids. Besides the well-known fructose 1,6-bisphosphate aldolase, other aldolases of microbial origin have attracted the interest of synthetic bio-organic chemists in recent years. These are either other dihydroxyacetone phosphate aldolases or aldolases depending on pyruvate/phosphoenolpyruvate, glycine, or acetaldehyde as donor substrate. Recently, an aldolase that accepts dihydroxyacetone or hydroxyacetone as a donor was described. A further enlargement of the arsenal of available chemoenzymatic tools can be achieved through screening for novel aldolase activities and directed evolution of existing aldolases to alter their substrate- or stereospecifities. We give an update of work on aldolases, with an emphasis on microbial aldolases.


Archives of Microbiology | 1995

Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12

Georg A. Sprenger

The pentose-phosphate pathway ofEscherichia coli K-12, in addition to its role as a route for the breakdown of sugars such as glucose or pentoses, provides the cell with intermediates for the anabolism of amino acids, vitamins, nucleotides, and cell wall constituents. Through its oxidative branch, it is a major source of NADPH. The expression of the gene for NADP-dependent 6-phospho-gluconate dehydrogenase (gnd) is regulated by the growth rate inE. coli. The recently identified gene for ribulose-5-phosphate 3-epimerase (rpe) is part of a large operon that comprises among others genes for the biosynthesis of aromatic amino acids. In recent years, genes for all enzymes of the pathway have been cloned and sequenced. Isoenzymes have been found for transketolase (genestktA andtktB), ribose-5-phosphate isomerase (rpiA andrpiB) and transaldolase (talA andtalB).


Applied Microbiology and Biotechnology | 1992

Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains

Sigrun D. Feldmann; Hermann Sahm; Georg A. Sprenger

The enzyme activities of the pentose phosphate pathway in the ethanologenic, Gram-negative bacterium Zymomonas mobilis were studied in order to construct a xylose catabolic pathway. In cell-free extracts of wild-type Z. mobilis CP4, activities of the enzymes transketolase (TKT) [2 munits (U)/mg], phosphoribose epimerase (640 mU/mg), phosphoribose isomerase (1600 mU/mg) and 6-phosphogluconate dehydrogenase (2 mU/mg) were determined. However, no transaldolase activity could be detected. Recombinant strains of Z. mobilis were constructed that carried the xylAB genes of the xylose catabolic pathway from Klebsiella pneumoniae. Expression of xylose isomerase (XI, 150 mU/mg) and xylulokinase (XK) (1300 mU/mg) were found in recombinant strains but no growth on pentose as sole carbon source occurred. The xyl-recombinant cells were moreover growth-inhibited in the presence of xylose and were found to accumulate xylitol phosphate due to the subsequent action of a novel enzyme, an NADPH-dependent aldose reductase, and a side reaction of XK on xylitol. From the xylAB recombinant strains, mutants were isolated that were less inhibited and formed less xylitol phosphate when grown in the presence of xylose. The tkt gene of E. coli was cloned on the xylAB plasmid and introduced into Z. mobilis strains. This led to higher TKT activities (150 mU/mg) and, in cooperation with the enzymes XI and XK, mediated a conversion of small amounts of xylose to CO2 and ethanol. However, no growth on xylose as sole carbon source was detected, instead sedoheptulose 7-P accumulated intracellularly.


Archives of Microbiology | 1999

Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by 13C- and 31P-NMR spectroscopy.

A. A. de Graaf; Katharina Striegel; Rolf M. Wittig; Birgit Laufer; Günter Schmitz; Wolfgang Wiechert; Georg A. Sprenger; Hermann Sahm

Abstract The reasons for the well-known significantly different behaviour of the anaerobic, gram-negative, ethanologenic bacterium Zymomonas mobilis during growth on fructose (i.e. decreased growth and ethanol yields, increased by-product formation) as compared to that on its second natural substrate, glucose, have remained unexplained. A xylose-fermenting recombinant strain of Z. mobilis that was recently constructed in our laboratory also unexpectedly displayed an increased formation of by-products and a strongly reduced growth rate as compared to the parent strain. Therefore, a comprehensive study employing recently developed NMR-based methods for the in vivo analysis of intracellular phosphorylated pool sizes and metabolic fluxes was undertaken to enable a global characterization of the intracellular metabolic state of Z. mobilis during growth on 13C-labelled glucose, fructose and xylose in defined continuous cultures. The 13C-NMR flux analysis indicated that ribose 5-phosphate is synthesized via the nonoxidative pentose phosphate pathway in Z. mobilis, and it identified a metabolic bottleneck in the recombinant xylose-fermenting Z. mobilis strain at the level of heterologous xylulokinase. The 31P-NMR analyses revealed a global alteration of the levels of intracellular phosphorylated metabolites during growth on fructose as compared to that on glucose. The results suggest that this is primarily caused by an elevated concentration of intracellular fructose 6-phosphate.


Biochimica et Biophysica Acta | 1998

Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses

Ulrich Schörken; Georg A. Sprenger

Enzymes are increasingly being used to perform regio- and enantioselective reactions in chemoenzymatic syntheses. To utilize enzymes for unphysiological reactions and to yield novel products, a broad substrate spectrum is desirable. Thiamin diphosphate (ThDP)-dependent enzymes vary in their substrate tolerance from rather strict substrate specificity (phosphoketolases, glyoxylate carboligase) to more permissive enzymes (transketolase, dihydroxyacetone synthase, pyruvate decarboxylase) and therefore differ in their potential to be used as biocatalysts. We give an overview of the known substrate spectra of ThDP-dependent enzymes and present examples of multi-enzyme or chemoenzymatic approaches which involve ThDP-dependent enzymes as biocatalysts to obtain pharmaceutical compounds as ephedrine and glycosidase inhibitors, sex pheromones as exo-brevicomin, 13C-labeled metabolites, and other intermediates as 1-deoxyxylulose 5-phosphate, a precursor of vitamins and isoprenoids.


Journal of Bacteriology | 2001

Specificity of signal peptide recognition in Tat-dependent bacterial protein translocation

Natascha Blaudeck; Georg A. Sprenger; Roland Freudl; Thomas Wiegert

The bacterial twin arginine translocation (Tat) pathway translocates across the cytoplasmic membrane folded proteins which, in most cases, contain a tightly bound cofactor. Specific amino-terminal signal peptides that exhibit a conserved amino acid consensus motif, S/T-R-R-X-F-L-K, direct these proteins to the Tat translocon. The glucose-fructose oxidoreductase (GFOR) of Zymomonas mobilis is a periplasmic enzyme with tightly bound NADP as a cofactor. It is synthesized as a cytoplasmic precursor with an amino-terminal signal peptide that shows all of the characteristics of a typical twin arginine signal peptide. However, GFOR is not exported to the periplasm when expressed in the heterologous host Escherichia coli, and enzymatically active pre-GFOR is found in the cytoplasm. A precise replacement of the pre-GFOR signal peptide by an authentic E. coli Tat signal peptide, which is derived from pre-trimethylamine N-oxide (TMAO) reductase (TorA), allowed export of GFOR, together with its bound cofactor, to the E. coli periplasm. This export was inhibited by carbonyl cyanide m-chlorophenylhydrazone, but not by sodium azide, and was blocked in E. coli tatC and tatAE mutant strains, showing that membrane translocation of the TorA-GFOR fusion protein occurred via the Tat pathway and not via the Sec pathway. Furthermore, tight cofactor binding (and therefore correct folding) was found to be a prerequisite for proper translocation of the fusion protein. These results strongly suggest that Tat signal peptides are not universally recognized by different Tat translocases, implying that the signal peptides of Tat-dependent precursor proteins are optimally adapted only to their cognate export apparatus. Such a situation is in marked contrast to the situation that is known to exist for Sec-dependent protein translocation.


Structure | 1996

Crystal structure of transaldolase B from Escherichia coli suggests a circular permutation of the α/β barrel within the class I aldolase family

Jia Jia; Weijun Huang; Ulrich Schö rken; Hermann Sahm; Georg A. Sprenger; Ylva Lindqvist; Gunter Schneider

Abstract Background: Transaldolase is one of the enzymes in the non-oxidative branch of the pentose phosphate pathway. It transfers a C3 ketol fragment from a ketose donor to an aldose acceptor. Transaldolase, together with transketolase, creates a reversible link between the pentose phosphate pathway and glycolysis. The enzyme is of considerable interest as a catalyst in stereospecific organic synthesis and the aim of this work was to reveal the molecular architecture of transaldolase and provide insights into the structural basis of the enzymatic mechanism. Results The three-dimensional (3D) structure of recombinant transaldolase B from E. coli was determined at 1.87 a resolution. The enzyme subunit consists of a single eight-stranded α/β-barrel domain. Two subunits form a dimer related by a twofold symmetry axis. The active-site residue Lys132 which forms a Schiff base with the substrate is located at the bottom of the active-site cleft. Conclusion The 3D structure of transaldolase is similar to structures of other enzymes in the class I aldolase family. Comparison of these structures suggests that a circular permutation of the protein sequence might have occurred in transaldolase, which nevertheless results in a similar 3D structure. This observation provides evidence for a naturally occurring circular permutation in an α/β-barrel protein. It appears that such genetic permutations occur more frequently during evolution than was previously thought.


Journal of Molecular Catalysis B-enzymatic | 1999

Synthetic potential of thiamin diphosphate-dependent enzymes

Georg A. Sprenger; Martina Pohl

Abstract Thiamin diphosphate-dependent enzymes (mainly pyruvate decarboxylase, transketolase, benzoylformate decarboxylase) are increasingly being used to perform regio- and enantioselective reactions in chemoenzymatic syntheses. To utilize enzymes for unphysiological reactions and to yield novel products, a broad substrate spectrum is desirable. We give an overview of the use of these enzymes in biotransformations and in chemoenzymatic syntheses including multi-enzyme approaches which involve thiamin diphosphate-dependent enzymes as biocatalysts to obtain pharmaceutical compounds as ephedrine and glycosidase inhibitors, sex pheromones as exo -brevicomin, 13 C -labelled metabolites, and other intermediates as 1-deoxyxylulose 5-phosphate, a precursor of vitamins and isoprenoids.

Collaboration


Dive into the Georg A. Sprenger's collaboration.

Top Co-Authors

Avatar

Hermann Sahm

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Franke

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Michael Müller

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge