Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georg Felix is active.

Publication


Featured researches published by Georg Felix.


Annual Review of Plant Biology | 2009

A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors.

Thomas Boller; Georg Felix

Microbe-associated molecular patterns (MAMPs) are molecular signatures typical of whole classes of microbes, and their recognition plays a key role in innate immunity. Endogenous elicitors are similarly recognized as damage-associated molecular patterns (DAMPs). This review focuses on the diversity of MAMPs/DAMPs and on progress to identify the corresponding pattern recognition receptors (PRRs) in plants. The two best-characterized MAMP/PRR pairs, flagellin/FLS2 and EF-Tu/EFR, are discussed in detail and put into a phylogenetic perspective. Both FLS2 and EFR are leucine-rich repeat receptor kinases (LRR-RKs). Upon treatment with flagellin, FLS2 forms a heteromeric complex with BAK1, an LRR-RK that also acts as coreceptor for the brassinolide receptor BRI1. The importance of MAMP/PRR signaling for plant immunity is highlighted by the finding that plant pathogens use effectors to inhibit PRR complexes or downstream signaling events. Current evidence indicates that MAMPs, DAMPs, and effectors are all perceived as danger signals and induce a stereotypic defense response.


Nature | 2004

Bacterial disease resistance in Arabidopsis through flagellin perception

Cyril Zipfel; Silke Robatzek; Lionel Navarro; Jonathan D. G. Jones; Georg Felix; Thomas Boller

Plants and animals recognize microbial invaders by detecting pathogen-associated molecular patterns (PAMPs) such as flagellin. However, the importance of flagellin perception for disease resistance has, until now, not been demonstrated. Here we show that treatment of plants with flg22, a peptide representing the elicitor-active epitope of flagellin, induces the expression of numerous defence-related genes and triggers resistance to pathogenic bacteria in wild-type plants, but not in plants carrying mutations in the flagellin receptor gene FLS2. This induced resistance seems to be independent of salicylic acid, jasmonic acid and ethylene signalling. Wild-type and fls2 mutants both display enhanced resistance when treated with crude bacterial extracts, even devoid of elicitor-active flagellin, indicating the existence of functional perception systems for PAMPs other than flagellin. Although fls2 mutant plants are as susceptible as the wild type when bacteria are infiltrated into leaves, they are more susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion, probably at an early step, and contributes to the plants disease resistance.


Cell | 2006

Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation.

Cyril Zipfel; Gernot Kunze; Delphine Chinchilla; Anne Caniard; Jonathan D. G. Jones; Thomas Boller; Georg Felix

Higher eukaryotes sense microbes through the perception of pathogen-associated molecular patterns (PAMPs). Arabidopsis plants detect a variety of PAMPs including conserved domains of bacterial flagellin and of bacterial EF-Tu. Here, we show that flagellin and EF-Tu activate a common set of signaling events and defense responses but without clear synergistic effects. Treatment with either PAMP results in increased binding sites for both PAMPs. We used this finding in a targeted reverse-genetic approach to identify a receptor kinase essential for EF-Tu perception, which we called EFR. Nicotiana benthamiana, a plant unable to perceive EF-Tu, acquires EF-Tu binding sites and responsiveness upon transient expression of EFR. Arabidopsis efr mutants show enhanced susceptibility to the bacterium Agrobacterium tumefaciens, as revealed by a higher efficiency of T-DNA transformation. These results demonstrate that EFR is the EF-Tu receptor and that plant defense responses induced by PAMPs such as EF-Tu reduce transformation by Agrobacterium.


Nature | 2007

A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence

Delphine Chinchilla; Cyril Zipfel; Silke Robatzek; Birgit Kemmerling; Thorsten Nürnberger; Jonathan D. G. Jones; Georg Felix; Thomas Boller

Plants sense potential microbial invaders by using pattern-recognition receptors to recognize pathogen-associated molecular patterns (PAMPs). In Arabidopsis thaliana, the leucine-rich repeat receptor kinases flagellin-sensitive 2 (FLS2) (ref. 2) and elongation factor Tu receptor (EFR) (ref. 3) act as pattern-recognition receptors for the bacterial PAMPs flagellin and elongation factor Tu (EF-Tu) (ref. 5) and contribute to resistance against bacterial pathogens. Little is known about the molecular mechanisms that link receptor activation to intracellular signal transduction. Here we show that BAK1 (BRI1-associated receptor kinase 1), a leucine-rich repeat receptor-like kinase that has been reported to regulate the brassinosteroid receptor BRI1 (refs 6,7), is involved in signalling by FLS2 and EFR. Plants carrying bak1 mutations show normal flagellin binding but abnormal early and late flagellin-triggered responses, indicating that BAK1 acts as a positive regulator in signalling. The bak1-mutant plants also show a reduction in early, but not late, EF-Tu-triggered responses. The decrease in responses to PAMPs is not due to reduced sensitivity to brassinosteroids. We provide evidence that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin. Thus, BAK1 is not only associated with developmental regulation through the plant hormone receptor BRI1 (refs 6,7), but also has a functional role in PRR-dependent signalling, which initiates innate immunity.


The Plant Cell | 2004

The N Terminus of Bacterial Elongation Factor Tu Elicits Innate Immunity in Arabidopsis Plants

Gernot Kunze; Cyril Zipfel; Silke Robatzek; Karsten Niehaus; Thomas Boller; Georg Felix

Innate immunity is based on the recognition of pathogen-associated molecular patterns (PAMPs). Here, we show that elongation factor Tu (EF-Tu), the most abundant bacterial protein, acts as a PAMP in Arabidopsis thaliana and other Brassicaceae. EF-Tu is highly conserved in all bacteria and is known to be N-acetylated in Escherichia coli. Arabidopsis plants specifically recognize the N terminus of the protein, and an N-acetylated peptide comprising the first 18 amino acids, termed elf18, is fully active as inducer of defense responses. The shorter peptide, elf12, comprising the acetyl group and the first 12 N-terminal amino acids, is inactive as elicitor but acts as a specific antagonist for EF-Tu–related elicitors. In leaves of Arabidopsis plants, elf18 induces an oxidative burst and biosynthesis of ethylene, and it triggers resistance to subsequent infection with pathogenic bacteria.


The Plant Cell | 2006

The Arabidopsis Receptor Kinase FLS2 Binds flg22 and Determines the Specificity of Flagellin Perception

Delphine Chinchilla; Zsuzsa Bauer; Martin Regenass; Thomas Boller; Georg Felix

Flagellin, the main building block of the bacterial flagellum, acts as a pathogen-associated molecular pattern triggering the innate immune response in animals and plants. In Arabidopsis thaliana, the Leu-rich repeat transmembrane receptor kinase FLAGELLIN SENSITIVE2 (FLS2) is essential for flagellin perception. Here, we demonstrate the specific interaction of the elicitor-active epitope flg22 with the FLS2 protein by chemical cross-linking and immunoprecipitation. The functionality of this receptor was further tested by heterologous expression of the Arabidopsis FLS2 gene in tomato (Lycopersicon esculentum) cells. The perception of flg22 in tomato differs characteristically from that in Arabidopsis. Expression of Arabidopsis FLS2 conferred an additional flg22-perception system on the cells of tomato, which showed all of the properties characteristic of the perception of this elicitor in Arabidopsis. In summary, these results show that FLS2 constitutes the pattern-recognition receptor that determines the specificity of flagellin perception.


Journal of Biological Chemistry | 2010

Rapid Heteromerization and Phosphorylation of Ligand-activated Plant Transmembrane Receptors and Their Associated Kinase BAK1

Birgit Schulze; Tobias Mentzel; Anna K. Jehle; Katharina Mueller; Seraina Beeler; Thomas Boller; Georg Felix; Delphine Chinchilla

In plants leucine-rich repeat receptor kinases (LRR-RKs) located at the plasma membrane play a pivotal role in the perception of extracellular signals. For two of these LRR-RKs, the brassinosteroid receptor BRI1 and the flagellin receptor FLS2, interaction with the LRR receptor-like kinase BAK1 (BRI1-associated receptor kinase 1) was shown to be required for signal transduction. Here we report that FLS2·BAK1 heteromerization occurs almost instantaneously after perception of the ligand, the flagellin-derived peptide flg22. Flg22 can induce formation of a stable FLS2·BAK1 complex in microsomal membrane preparations in vitro, and the kinase inhibitor K-252a does not prevent complex formation. A kinase dead version of BAK1 associates with FLS2 in a flg22-dependent manner but does not restore responsiveness to flg22 in cells of bak1 plants, demonstrating that kinase activity of BAK1 is essential for FLS2 signaling. Furthermore, using in vivo phospholabeling, we are able to detect de novo phosphorylation of both FLS2 and BAK1 within 15 s of stimulation with flg22. Similarly, brassinolide induces BAK1 phosphorylation within seconds. Other triggers of plant defense, such as bacterial EF-Tu and the endogenous AtPep1 likewise induce rapid formation of heterocomplexes consisting of de novo phosphorylated BAK1 and proteins representing the ligand-specific binding receptors EF-Tu receptor and Pep1 receptor 1, respectively. Thus, we propose that several LRR-RKs form tight complexes with BAK1 almost instantaneously after ligand binding and that the subsequent phosphorylation events are key initial steps in signal transduction.


Journal of Biological Chemistry | 2010

Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2

Elzbieta Krol; Tobias Mentzel; Delphine Chinchilla; Thomas Boller; Georg Felix; Birgit Kemmerling; Sandra Postel; Michael Arents; Elena Jeworutzki; Khaled A. S. Al-Rasheid; Dirk Becker; Rainer Hedrich

Plasma membrane-borne pattern recognition receptors, which recognize microbe-associated molecular patterns and endogenous damage-associated molecular patterns, provide the first line of defense in innate immunity. In plants, leucine-rich repeat receptor kinases fulfill this role, as exemplified by FLS2 and EFR, the receptors for the microbe-associated molecular patterns flagellin and elongation factor Tu. Here we examined the perception of the damage-associated molecular pattern peptide 1 (AtPep1), an endogenous peptide of Arabidopsis identified earlier and shown to be perceived by the leucine-rich repeat protein kinase PEPR1. Using seedling growth inhibition, elicitation of an oxidative burst and induction of ethylene biosynthesis, we show that wild type plants and the pepr1 and pepr2 mutants, affected in PEPR1 and in its homologue PEPR2, are sensitive to AtPep1, but that the double mutant pepr1/pepr2 is completely insensitive. As a central body of our study, we provide electrophysiological evidence that at the level of the plasma membrane, AtPep1 triggers a receptor-dependent transient depolarization through activation of plasma membrane anion channels, and that this effect is absent in the double mutant pepr1/pepr2. The double mutant also fails to respond to AtPep2 and AtPep3, two distant homologues of AtPep1 on the basis of homology screening, implying that the PEPR1 and PEPR2 are responsible for their perception too. Our findings provide a basic framework to study the biological role of AtPep1-related danger signals and their cognate receptors.


Journal of Biological Chemistry | 2007

BACTERIA-DERIVED PEPTIDOGLYCANS CONSTITUTE PATHOGEN- ASSOCIATED MOLECULAR PATTERNS TRIGGERING INNATE IMMUNITY IN ARABIDOPSIS

Andrea A. Gust; Raja Biswas; Heike D. Lenz; Thomas Rauhut; Stefanie Ranf; Birgit Kemmerling; Friedrich Götz; Erich Glawischnig; Justin Lee; Georg Felix; Thorsten Nürnberger

Pathogen-associated molecular pattern (PAMP)-triggered immunity constitutes the primary plant immune response that has evolved to recognize invariant structures of microbial surfaces. Here we show that Gram-positive bacteria-derived peptidoglycan (PGN) constitutes a novel PAMP of immune responses in Arabidopsis thaliana. Treatment with PGN from Staphylococcus aureus results in the activation of plant responses, such as medium alkalinization, elevation of cytoplasmic calcium concentrations, nitric oxide, and camalexin production and the post-translational induction of MAPK activities. Microarray analysis performed with RNA prepared from PGN-treated Arabidopsis leaves revealed enhanced transcript levels for 236 genes, many of which are also altered upon administration of flagellin. Comparison of cellular responses after treatment with bacteria-derived PGN and structurally related fungal chitin indicated that both PAMPs are perceived via different perception systems. PGN-mediated immune stimulation in Arabidopsis is based upon recognition of the PGN sugar backbone, while muramyl dipeptide, which is inactive in this plant, triggers immunity-associated responses in animals. PGN adds to the list of PAMPs that induce innate immune programs in both plants and animals. However, we propose that PGN perception systems arose independently in both lineages and are the result of convergent evolution.


Plant Molecular Biology | 2007

Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities

Silke Robatzek; Pascal Bittel; Delphine Chinchilla; Petra Köchner; Georg Felix; Shin Han Shiu; Thomas Boller

Bacterial flagellin is known to stimulate host immune responses in mammals and plants. In Arabidopsis thaliana, the receptor kinase FLS2 mediates flagellin perception through physical interaction with a highly conserved epitope in the N-terminus of flagellin, represented by the peptide flg22 derived from Pseudomonas syringae. The peptide flg22 is highly active as an elicitor in many plant species. In contrast, a shortened version of the same epitope derived from Escherichia coli, flg15E coli, is highly active as an elicitor in tomato but not in A. thaliana or Nicotiana benthamiana. Here, we make use of these species-specific differences in flagellin perception abilities to identify LeFLS2 as the flagellin receptor in tomato. LeFLS2 is most closely related to AtFLS2, indicating that it may represent the flagellin receptor of tomato. Expression of the LeFLS2 gene in Arabidopsis did not result in accumulation of its corresponding gene product, as indicated by experiments with LeFLS2-GFP fusions. In contrast, expression of LeFLS2-GFP fusions in N.benthamiana, a species that, like tomato, belongs to the Solanaceae, was obviously functional. N. benthamiana plants transiently expressing a LeFLS2-GFP fusion acquired responsiveness to flg15E coli to which they are normally unresponsive. Thus, LeFLS2 encodes a functional, specific flagellin receptor, the first to be identified in a plant family other than the Brassicaceae.

Collaboration


Dive into the Georg Felix's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge