Melinka A. Butenko
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melinka A. Butenko.
The Plant Cell | 2003
Melinka A. Butenko; Sara E. Patterson; Paul E. Grini; Grethe-Elisabeth Stenvik; Silja S. Amundsen; Abul Mandal; Reidunn B. Aalen
Abscission is an active process that enables plants to shed unwanted organs. Because the purpose of the flower is to facilitate pollination, it often is abscised after fertilization. We have identified an Arabidopsis ethylene-sensitive mutant, inflorescence deficient in abscission (ida), in which floral organs remain attached to the plant body after the shedding of mature seeds, even though a floral abscission zone develops. The IDA gene, positioned in the genomic DNA flanking the single T-DNA present in the ida line, was identified by complementation. The gene encodes a small protein with an N-terminal signal peptide, suggesting that the IDA protein is the ligand of an unknown receptor involved in the developmental control of floral abscission. We have identified Arabidopsis genes, and cDNAs from a variety of plant species, that encode similar proteins, which are distinct from known ligands. IDA and the IDA-like proteins may represent a new class of ligands in plants.
The Plant Cell | 2008
Grethe-Elisabeth Stenvik; Nora M. Tandstad; Yongfeng Guo; Chun-Lin Shi; Wenche Kristiansen; Asbjørn Holmgren; Steven E. Clark; Reidunn B. Aalen; Melinka A. Butenko
In Arabidopsis thaliana, the final step of floral organ abscission is regulated by INFLORESCENCE DEFICIENT IN ABSCISSION (IDA): ida mutants fail to abscise floral organs, and plants overexpressing IDA display earlier abscission. We show that five IDA-LIKE (IDL) genes are expressed in different tissues, but plants overexpressing these genes have phenotypes similar to IDA-overexpressing plants, suggesting functional redundancy. IDA/IDL proteins have N-terminal signal peptides and a C-terminal conserved motif (extended PIP [EPIP]) at the C terminus (EPIP-C). IDA can, similar to CLAVATA3, be processed by an activity from cauliflower meristems. The EPIP-C of IDA and IDL1 replaced IDA function in vivo, when the signal peptide was present. In addition, synthetic IDA and IDL1 EPIP peptides rescued ida and induced early floral abscission in wild-type flowers. The EPIP-C of the other IDL proteins could partially substitute for IDA function. Similarly to ida, a double mutant between the receptor-like kinases (RLKs) HAESA (HAE) and HAESA-LIKE2 (HSL2) displays nonabscising flowers. Neither overexpression of IDA nor synthetic EPIP or EPIP-C peptides could rescue the hae hsl2 abscission deficiency. We propose that IDA and the IDL proteins constitute a family of putative ligands that act through RLKs to regulate different events during plant development.
The Plant Cell | 2006
Grethe-Elisabeth Stenvik; Melinka A. Butenko; Breeanna Urbanowicz; Jocelyn K. C. Rose; Reidunn B. Aalen
Plants may shed organs when they have been injured or served their purpose. The differential pattern of organ abscission in different species is most likely the result of evolutionary adaptation to a variety of life styles and environments. The final step of abscission-related cell separation in floral organs of wild-type Arabidopsis thaliana, which only abscises sepals, petals, and stamens, is controlled by INFLORESCENCE DEFICIENT IN ABSCISSION (IDA). Here, we demonstrate that Arabidopsis 35S:IDA lines constitutively overexpressing IDA exhibit earlier abscission of floral organs, showing that the abscission zones are responsive to IDA soon after the opening of the flowers. In addition, ectopic abscission was observed at the bases of the pedicel, branches of the inflorescence, and cauline leaves. The silique valves also dehisced prematurely. Scanning electron microscopy indicated a spread of middle lamella degradation from preformed abscission zone cells to neighboring cells. A transcript encoding an arabinogalactan protein (AGP) was upregulated in the 35S:IDA lines, and large amounts of AGP were secreted at the sites of abscission. AGP was shown to be a constituent of wild-type floral abscission zones during and soon after cell separation had been completed. We suggest that the restricted expression pattern of IDA precludes abscission of nonfloral organs in Arabidopsis.
Trends in Plant Science | 2009
Melinka A. Butenko; Ane Kjersti Vie; Tore Brembu; Reidunn B. Aalen; Atle M. Bones
A novel candidate ligand-receptor system, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the related receptor-like kinases (RLKs) HAESA (HAE) and HAESA-LIKE (HSL)2, has been shown to control floral abscission in Arabidopsis thaliana. Furthermore, several IDA-LIKE (IDL) proteins, which contain a conserved C-terminal domain resembling that of the CLAVATA (CLV)3-ENDOSPERM SURROUNDING REGION (ESR)-RELATED (CLE) protein family, have been shown to be partially redundant with IDA. Here, we use the genetic similarities between the IDA and CLV3 signalling systems to hypothesize that closely related peptide ligands are likely to interact with families of closely related RLKs. Guided by this hypothesis and with the aid of genetics and novel methods, ligand-receptor systems can be identified to improve our understanding of developmental processes in plants.
Development | 2008
Sarah M. McKim; Grethe-Elisabeth Stenvik; Melinka A. Butenko; Wenche Kristiansen; Sung Ki Cho; Shelley R. Hepworth; Reidunn B. Aalen; George W. Haughn
The Arabidopsis BLADE-ON-PETIOLE 1 (BOP1) and BOP2 genes encode redundant transcription factors that promote morphological asymmetry during leaf and floral development. Loss-of-function bop1 bop2 mutants display a range of developmental defects, including a loss of floral organ abscission. Abscission occurs along specialised cell files, called abscission zones (AZs) that develop at the junction between the leaving organ and main plant body. We have characterized the bop1 bop2 abscission phenotype to determine how BOP1 and BOP2 contribute to the known abscission developmental framework. Histological analysis and petal breakstrength measurements of bop1 bop2 flowers show no differentiation of floral AZs. Furthermore, vestigial cauline leaf AZs are also undifferentiated in bop1 bop2 mutants, suggesting that BOP proteins are essential to establish AZ cells in different tissues. In support of this hypothesis, BOP1/BOP2 activity is required for both premature floral organ abscission and the ectopic abscission of cauline leaves promoted by the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) gene under the control of the constitutive CaMV 35S promoter. Expression of several abscission-related marker genes, including IDA, is relatively unperturbed in bop1 bop2 mutants, indicating that these AZ genes respond to positional cues that are independent of BOP1/BOP2 activity. We also show that BOP1 and BOP2 promote growth of nectary glands, which normally develop at the receptacle adjacent to developing AZs. Taken together, these data suggest that BOP1/BOP2 activity is required for multiple cell differentiation events in the proximal regions of inflorescence lateral organs.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Robert P. Kumpf; Chun-Lin Shi; Antoine Larrieu; Ida M. Stø; Melinka A. Butenko; Benjamin Péret; Even Sannes Riiser; Malcolm J. Bennett; Reidunn B. Aalen
Throughout their life cycle, plants produce new organs, such as leaves, flowers, and lateral roots. Organs that have served their purpose may be shed after breakdown of primary cell walls between adjacent cell files at the site of detachment. In Arabidopsis, floral organs abscise after pollination, and this cell separation event is controlled by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Emergence of new lateral root primordia, initiated deep inside the root under the influence of auxin, is similarly dependent on cell wall dissolution between cells in the overlaying endodermal, cortical, and epidermal tissues. Here we show that this process requires IDA, HAE, and HSL2. Mutation in these genes constrains the passage of the growing lateral root primordia through the overlaying layers, resulting in altered shapes of the lateral root primordia and of the overlaying cells. The HAE and HSL2 receptors are redundant in function during floral organ abscission, but during lateral root emergence they are differentially involved in regulating cell wall remodeling genes. In the root, IDA is strongly auxin-inducible and dependent on key regulators of lateral root emergence—the auxin influx carrier LIKE AUX1-3 and AUXIN RESPONSE FACTOR7. The expression levels of the receptor genes are only transiently induced by auxin, suggesting they are limiting factors for cell separation. We conclude that elements of the same cell separation signaling module have been adapted to function in different developmental programs.
The Plant Cell | 2012
Alex Marshall; Reidunn B. Aalen; Dominique Audenaert; Tom Beeckman; Martin R. Broadley; Melinka A. Butenko; Ana I. Caño-Delgado; Sacco C. de Vries; Thomas Dresselhaus; Georg Felix; Neil S. Graham; John Foulkes; Christine Granier; Thomas Greb; Ueli Grossniklaus; John P. Hammond; Renze Heidstra; Charlie Hodgman; Michael Hothorn; Dirk Inzé; Lars Østergaard; Eugenia Russinova; Rüdiger Simon; Aleksandra Skirycz; Yvonne Stahl; Cyril Zipfel; Ive De Smet
Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops.
The Plant Cell | 2011
Chun-Lin Shi; Grethe-Elisabeth Stenvik; Ane Kjersti Vie; Atle M. Bones; Véronique Pautot; Marcel Proveniers; Reidunn B. Aalen; Melinka A. Butenko
This work reports the characterization of a new mutant allele of the KNOX gene BP/KNAT1 and reveals that BP/KNAT1 inhibits floral organ abscission in Arabidopsis by restricting abscission zone cell size and number. It puts forward a model whereby IDA signaling suppresses BP/KNAT1, which in turn allows KNAT2 and KNAT6 to induce floral organ abscission. Floral organ abscission in Arabidopsis thaliana is regulated by the putative ligand-receptor system comprising the signaling peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the two receptor-like kinases HAESA and HAESA-LIKE2. The IDA signaling pathway presumably activates a MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade to induce separation between abscission zone (AZ) cells. Misexpression of IDA effectuates precocious floral abscission and ectopic cell separation in latent AZ cell regions, which suggests that negative regulators are in place to prevent unrestricted and untimely AZ cell separation. Through a screen for mutations that restore floral organ abscission in ida mutants, we identified three new mutant alleles of the KNOTTED-LIKE HOMEOBOX gene BREVIPEDICELLUS (BP)/KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1). Here, we show that bp mutants, in addition to shedding their floral organs prematurely, have phenotypic commonalities with plants misexpressing IDA, such as enlarged AZ cells. We propose that BP/KNAT1 inhibits floral organ cell separation by restricting AZ cell size and number and put forward a model whereby IDA signaling suppresses BP/KNAT1, which in turn allows KNAT2 and KNAT6 to induce floral organ abscission.
eLife | 2016
Julia Santiago; Benjamin Brandt; Mari Wildhagen; Ulrich Hohmann; Ludwig A. Hothorn; Melinka A. Butenko; Michael Hothorn
Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism. DOI: http://dx.doi.org/10.7554/eLife.15075.001
The Plant Cell | 2014
Melinka A. Butenko; Mari Wildhagen; Markus Albert; Anna K. Jehle; Hubert Kalbacher; Reidunn B. Aalen; Georg Felix
Peptide signals have emerged as an important class of regulators in cell-to-cell communication in plants. Several families of small, secreted proteins with a conserved C-terminal Pro-rich motif have been identified as functional peptide signals in Arabidopsis thaliana. These proteins are presumed to be trimmed proteolytically and undergo posttranslational modifications, such as hydroxylation of Pro residues and glycosylation, to form mature, bioactive signals. Identification and matching of such ligands with their respective receptors remains a major challenge since the genes encoding them often show redundancy and low expression restricted to a few cells or particular developmental stages. To overcome these difficulties, we propose the use of ectopic expression of receptor genes in suitable plant cells like Nicotiana benthamiana for testing ligand candidates in receptor output assays and in binding studies. As an example, we used the IDA peptide HAE/HSL2 receptor signaling system known to regulate floral organ abscission. We demonstrate that the oxidative burst response can be employed as readout for receptor activation by synthetic peptides and that a new, highly sensitive, nonradioactive labeling approach can be used to reveal a direct correlation between peptide activity and receptor affinity. We suggest that these approaches will be of broad value for the field of ligand-receptor studies in plants.