Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georg Heimel is active.

Publication


Featured researches published by Georg Heimel.


Nature Materials | 2008

Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies

Steffen Duhm; Georg Heimel; Ingo Salzmann; Hendrik Glowatzki; R.L. Johnson; A. Vollmer; Jürgen P. Rabe; Norbert Koch

Although an isolated individual molecule clearly has only one ionization potential, multiple values are found for molecules in ordered assemblies. Photoelectron spectroscopy of archetypical pi-conjugated organic compounds on metal substrates combined with first-principles calculations and electrostatic modelling reveal the existence of a surface dipole built into molecular layers. Conceptually different from the surface dipole at metal surfaces, its origin lies in details of the molecular electronic structure and its magnitude depends on the orientation of molecules relative to the surface of an ordered assembly. Suitable pre-patterning of substrates to induce specific molecular orientations in subsequently grown films thus permits adjusting the ionization potential of one molecular species over up to 0.6 eV via control over monolayer morphology. In addition to providing in-depth understanding of this phenomenon, our study offers design guidelines for improved organic-organic heterojunctions, hole- or electron-blocking layers and reduced barriers for charge-carrier injection in organic electronic devices.


Accounts of Chemical Research | 2008

The interface energetics of self-assembled monolayers on metals.

Georg Heimel; Lorenz Romaner; Egbert Zojer; Jean-Luc Brédas

Self-assembled monolayers (SAMs) of organic molecules generally modify the surface properties when covalently linked to substrates. In organic electronics, SAMs are used to fine-tune the work functions of inorganic electrodes, thereby minimizing the energy barriers for injection or extraction of charge carriers into or out of an active organic layer; a detailed understanding of the interface energetics on an atomistic scale is required to design improved interfaces. In the field of molecular electronics, the SAM itself (or, in some cases, one or a few molecules) carries the entire device functionality; the interface then essentially becomes the device and the alignment of the molecular energy levels with those of the electrodes defines the overall charge-transport characteristics. This Account provides a review of recent theoretical studies of the interface energetics for SAMs of π-conjugated molecules covalently linked to noble metal surfaces. After a brief description of the electrostatics of dipole layers at metal/molecule interfaces, the results of density functional theory calculations are discussed for SAMs of representative conjugated thiols on Au(111). Particular emphasis is placed on the modification of the work function of the clean metal surface upon SAM formation, the alignment of the energy levels within the SAM with the metal Fermi level, and the connection between these two quantities. To simplify the discussion, we partition the description of the metal/SAM system into two parts by considering first an isolated free-standing layer of molecules and then the system obtained after molecule-metal bond formation. From an electrostatic standpoint, both the isolated monolayer and the metal-molecule bonds can be cast in the form of dipole layers, which lead to steps in the electrostatic potential energy at the interface. While the step due to the isolated molecular layer impacts only the work function of the SAM-covered surface, the step arising from the bond formation influences both the work function and the alignment of the electronic levels in the SAM with respect to the metal Fermi energy. Interestingly, headgroup substitutions at the far ends of the molecules forming the SAM are electrostatically decoupled from the metal-thiol interface in densely packed SAMs; as a result, the nature of these substituents and the binding chemistry between the metal and the molecules are two largely unrelated handles with which to independently tune the work function and the level alignment. The establishment of a comprehensive atomistic picture regarding the impact of the individual components of a SAM on the interface energetics at metal/organic junctions paves the way for clear guidelines to design improved functional interfaces in organic and molecular electronics.


Nature Communications | 2014

Organic semiconductor density of states controls the energy level alignment at electrode interfaces

Martin Oehzelt; Norbert Koch; Georg Heimel

Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions.


Nature Chemistry | 2013

Charged and metallic molecular monolayers through surface-induced aromatic stabilization

Georg Heimel; Steffen Duhm; Ingo Salzmann; Alexander Gerlach; A. Strozecka; Jens Niederhausen; Christoph Bürker; Takuya Hosokai; I. Fernández-Torrente; G. Schulze; Stefanie Winkler; Andreas Wilke; Raphael Schlesinger; Johannes Frisch; Benjamin Bröker; A. Vollmer; B. Detlefs; Jens Pflaum; Satoshi Kera; Katharina J. Franke; Nobuo Ueno; J. I. Pascual; Frank Schreiber; Norbert Koch

Large π-conjugated molecules, when in contact with a metal surface, usually retain a finite electronic gap and, in this sense, stay semiconducting. In some cases, however, the metallic character of the underlying substrate is seen to extend onto the first molecular layer. Here, we develop a chemical rationale for this intriguing phenomenon. In many reported instances, we find that the conjugation length of the organic semiconductors increases significantly through the bonding of specific substituents to the metal surface and through the concomitant rehybridization of the entire backbone structure. The molecules at the interface are thus converted into different chemical species with a strongly reduced electronic gap. This mechanism of surface-induced aromatic stabilization helps molecules to overcome competing phenomena that tend to keep the metal Fermi level between their frontier orbitals. Our findings aid in the design of stable precursors for metallic molecular monolayers, and thus enable new routes for the chemical engineering of metal surfaces.


Journal of the American Chemical Society | 2008

Tuning the ionization energy of organic semiconductor films: the role of intramolecular polar bonds.

Ingo Salzmann; Steffen Duhm; Georg Heimel; Martin Oehzelt; Rolf Kniprath; R.L. Johnson; Jürgen P. Rabe; Norbert Koch

For the prototypical conjugated organic molecules pentacene and perfluoropentacene, we demonstrate that the surface termination of ordered organic thin films with intramolecular polar bonds (e.g., -H versus -F) can be used to tune the ionization energy. The collective electrostatics of these oriented bonds also explains the pronounced orientation dependence of the ionization energy. Furthermore, mixing of differently terminated molecules on a molecular length scale allows continuously tuning the ionization energy of thin organic films between the limiting values of the two pure materials. Our study shows that surface engineering of organic semiconductors via adjusting the polarity of intramolecular bonds represents a generally viable alternative to the surface modification of substrates to control the energetics at organic/(in)organic interfaces.


Journal of the American Chemical Society | 2008

Adsorption-induced intramolecular dipole: correlating molecular conformation and interface electronic structure.

Norbert Koch; Alexander Gerlach; Steffen Duhm; Hendrik Glowatzki; Georg Heimel; A. Vollmer; Yoichi Sakamoto; Toshiyasu Suzuki; J. Zegenhagen; Jürgen P. Rabe; Frank Schreiber

The interfaces formed between pentacene (PEN) and perfluoropentacene (PFP) molecules and Cu(111) were studied using photoelectron spectroscopy, X-ray standing wave (XSW), and scanning tunneling microscopy measurements, in conjunction with theoretical modeling. The average carbon bonding distances for PEN and PFP differ strongly, that is, 2.34 A for PEN versus 2.98 A for PFP. An adsorption-induced nonplanar conformation of PFP is suggested by XSW (F atoms 0.1 A above the carbon plane), which causes an intramolecular dipole of approximately 0.5 D. These observations explain why the hole injection barriers at both molecule/metal interfaces are comparable (1.10 eV for PEN and 1.35 eV for PFP) whereas the molecular ionization energies differ significantly (5.00 eV for PEN and 5.85 eV for PFP). Our results show that the hypothesis of charge injection barrier tuning at organic/metal interfaces by adjusting the ionization energy of molecules is not always readily applicable.


Accounts of Chemical Research | 2016

Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules

Ingo Salzmann; Georg Heimel; Martin Oehzelt; Stefanie Winkler; Norbert Koch

Todays information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi-Dirac occupation of which ultimately determines the doping efficiency, thus emerges as key challenge. As a first step, the formation of charge transfer complexes is identified as being detrimental to the doping efficiency, which suggests sterically shielding the functional core of dopant molecules as an additional design rule to complement the requirement of low ionization energies or high electron affinities in efficient n-type or p-type dopants, respectively. In an extended outlook, we finally argue that, to fully meet this challenge, an improved understanding is required of just how the admixture of dopant molecules to organic semiconductors does affect the density of states: compared with their inorganic counterparts, traps for charge carriers are omnipresent in organic semiconductors due to structural and chemical imperfections, and Coulomb attraction between ionized dopants and free charge carriers is typically stronger in organic semiconductors owing to their lower dielectric constant. Nevertheless, encouraging progress is being made toward developing a unifying picture that captures the entire range of doping induced phenomena, from ion-pair to complex formation, in both conjugated polymers and molecules. Once completed, such a picture will provide viable guidelines for synthetic and supramolecular chemistry that will enable further technological advances in organic and hybrid organic/inorganic devices.


Advanced Materials | 2010

Modeling the Electronic Properties of π‐Conjugated Self‐Assembled Monolayers

Georg Heimel; Ferdinand Rissner; Egbert Zojer

The modification of electrode surfaces by depositing self-assembled monolayers (SAMs) provides the possibility for controlled adjustment of various key parameters in organic and molecular electronic devices. Most important among them are the work function of the electrode and the relative alignment of its Fermi level with the conducting states in the SAM itself and with those in a subsequently deposited organic semiconductor. For the efficient application of such interface modifications it is crucial to reach a proper understanding of the relation between the chemical structure of a molecule, its molecular electronic characteristics, and the properties of the SAM formed by such molecules. Over the past years, quantum-mechanical calculations have proven to be a valuable tool for reaching a fundamental understanding of the relevant structure-property relations. Here, we provide a review over the field and report on recent progress in the modeling of the interfacial electronic properties of pi-conjugated SAMs. In addition to the insight that can be gained from simple electrostatic considerations, we focus on the quantum-mechanical description of the roles played by substituents, molecular backbones, chemical anchoring groups, and the packing density of molecules on the surface. Furthermore, we explicitly address the energy-level alignment at the interface between a prototypical organic semiconductor and a SAM-covered metal electrode and describe an approach suitable for extending the metallic character of the substrate onto the monolayer.


Angewandte Chemie | 2013

Doping of organic semiconductors : Impact of dopant strength and electronic coupling

Henry Méndez; Georg Heimel; Andreas Opitz; Katrein Sauer; Patrick Barkowski; Martin Oehzelt; Junshi Soeda; Toshihiro Okamoto; Jun Takeya; Jean-Baptiste Arlin; Jean-Yves Balandier; Yves Geerts; Norbert Koch; Ingo Salzmann

Molecular doping: The standard model for molecular p-doping of organic semiconductors (OSCs) assumes integer charge transfer between OSC and dopant. This is in contrast to an alternative model based on intermolecular complex formation instead. By systematically varying the acceptor strength it was possible to discriminate the two models. The latter is clearly favored, suggesting strategies for the chemical design of more efficient molecular dopants.


Journal of Chemical Physics | 2005

Breakdown of the mirror image symmetry in the optical absorption/emission spectra of oligo(para-phenylene)s

Georg Heimel; Maria Daghofer; Johannes Gierschner; Emil J. W. List; Andrew C. Grimsdale; Klaus Müllen; David Beljonne; Jean-Luc Brédas; Egbert Zojer

The absorption and emission spectra of most luminescent, pi-conjugated, organic molecules are the mirror image of each other. In some cases, however, this symmetry is severely broken. In the present work, the asymmetry between the absorption and fluorescence spectra in molecular systems consisting of para-linked phenyl rings is studied. The vibronic structure of the emission and absorption bands is calculated from ab initio quantum chemical methods and a subsequent, rigorous Franck-Condon treatment. Good agreement with experiment is achieved. A clear relation can be established between the strongly anharmonic double-well potential for the phenylene ring librations around the long molecular axis and the observed deviation from the mirror image symmetry. Consequences for related compounds and temperature dependent optical measurements are also discussed.

Collaboration


Dive into the Georg Heimel's collaboration.

Top Co-Authors

Avatar

Norbert Koch

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Egbert Zojer

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Martin Oehzelt

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar

Lorenz Romaner

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ingo Salzmann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Luc Brédas

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Resel

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jürgen P. Rabe

Humboldt University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge