Georg Lamer
Leibniz Institute for Astrophysics Potsdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Georg Lamer.
Astronomy and Astrophysics | 2009
M. G. Watson; A. C. Schröder; D. Fyfe; C. G. Page; Georg Lamer; S. Mateos; J. P. Pye; Masaaki Sakano; S. R. Rosen; Jean Ballet; X. Barcons; D. Barret; Th. Boller; H. Brunner; M. Brusa; A. Caccianiga; Francisco J. Carrera; M. T. Ceballos; R. Della Ceca; Mark Denby; G. Denkinson; S. Dupuy; S. Farrell; F. Fraschetti; Michael J. Freyberg; P. Guillout; V. Hambaryan; T. Maccacaro; B. Mathiesen; Richard G. McMahon
Aims. Pointed observations with XMM-Newton provide the basis for creating catalogues of X-ray sources detected serendipitously in each field. This paper describes the creation and characteristics of the 2XMM catalogue. Methods. The 2XMM catalogue has been compiled from a new processing of the XMM-Newton EPIC camera data. The main features of the processing pipeline are described in detail. Results. The catalogue, the largest ever made at X-ray wavelengths, contains 246 897 detections drawn from 3491 public XMM-Newton observations over a 7-year interval, which relate to 191 870 unique sources. The catalogue fields cover a sky area of more than 500 deg(2). The non-overlapping sky area is similar to 360 deg(2) (similar to 1% of the sky) as many regions of the sky are observed more than once by XMM-Newton. The catalogue probes a large sky area at the flux limit where the bulk of the objects that contribute to the X-ray background lie and provides a major resource for generating large, well-defined X-ray selected source samples, studying the X-ray source population and identifying rare object types. The main characteristics of the catalogue are presented, including its photometric and astrometric properties
The Astrophysical Journal | 2005
C. R. Mullis; P. Rosati; Georg Lamer; H. Böhringer; A. D. Schwope; Peter Schuecker; R. Fassbender
We report the discovery of a massive, X-ray-luminous cluster of galaxies at z = 1.393, the most distant X-ray-selected cluster found to date. XMMU J2235.3-2557 was serendipitously detected as an extended X-ray source in an archival XMM-Newton observation of NGC 7314. VLT FORS2 R- and z-band snapshot imaging reveals an overdensity of red galaxies in both angular and color spaces. The galaxy enhancement is coincident in the sky with the X-ray emission; the cluster red sequence at R-z 2.1 identifies it as a high-redshift candidate. Subsequent FORS2 multiobject spectroscopy unambiguously confirms the presence of a massive cluster based on 12 concordant redshifts in the interval 1.38 1 cluster found with XMM-Newton, the relative ease and efficiency of discovery demonstrates that it should be possible to build large samples of z > 1 clusters through the joint use of X-ray and large ground-based telescopes.
Astronomy and Astrophysics | 2009
P. Rosati; P. Tozzi; R. Gobat; J. S. Santos; M. Nonino; R. Demarco; C. Lidman; C. R. Mullis; V. Strazzullo; H. Böhringer; R. Fassbender; Kyle S. Dawson; M. Tanaka; J. Jee; Holland C. Ford; Georg Lamer; A. D. Schwope
Context. The galaxy cluster XMMU J2235.3−2557 (hereafter XMM2235), spectroscopically confirmed at z = 1.39, is one of the most distant X-ray selected galaxy clusters. It has been at the center of a multi-wavelength observing campaign with ground and space facilities. Aims. We characterize the galaxy populations of passive members, the thermodynamical properties and metal abundance of the hot gas, and the total mass of the system using imaging data with HST/ACS (i775 and z850 bands) and VLT/ISAAC (J and KS bands), extensive spectroscopic data obtained with VLT/FORS2, and deep (196 ks) Chandra observations. Methods. Chandra data allow temperature and metallicity to be measured with good accuracy and the X-ray surface brightness profile to be traced out to 1 � (or 500 kpc), thus allowing the mass to be reliably estimated. Out of a total sample of 34 spectroscopically confirmed cluster members, we selected 16 passive galaxies (without detectable [OII]) within the central 2 � (or 1 Mpc) with ACS coverage, and inferred star formation histories for subsamples of galaxies inside and outside the core by modeling their spectrophotometric data with spectral synthesis models. Results. Chandra data show a regular elongated morphology, closely resembling the distribution of core galaxies, with a significant cool core. We measure a global X-ray temperature of kT = 8.6 +1.3 −1.2 keV (68% confidence), which we find to be robust against several systematics involved in the X-ray spectral analysis. By detecting the rest frame 6.7 keV Iron K line in the Chandra spectrum, we measure a metallicity Z = 0.26 +0.20 −0.16 Z� . In the likely hypothesis of hydrostatic equilibrium, we obtain a total mass of Mtot( 1, with a baryonic content, both its galaxy population and intracluster gas, in a significantly advanced evolutionary stage at 1/ 3o f the current age of the Universe.
Astronomy and Astrophysics | 2016
S. R. Rosen; Natalie A. Webb; M. G. Watson; J. Ballet; Didier Barret; V. Braito; Francisco J. Carrera; M. T. Ceballos; M. Coriat; R. Della Ceca; Grant W. Denkinson; P. Esquej; S. A. Farrell; Michael J. Freyberg; F. Grisé; P. Guillout; L. Heil; Filippos Koliopanos; D. Law-Green; Georg Lamer; Dacheng Lin; R. Martino; Laurent D. Michel; C. Motch; A. Nebot Gómez-Morán; C. G. Page; Kim L. Page; M. J. Page; Manfred W. Pakull; J. P. Pye
© ESO, 2016.Context. Thanks to the large collecting area (3 × ∼1500 cm2 at 1.5 keV) and wide field of view (30′ across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the detection of up to several hundred X-ray sources, most of which are newly discovered objects. Since XMM-Newton has now been in orbit for more than 15 yr, hundreds of thousands of sources have been detected. Aims. Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision of sources, greater net sensitivity for source detection, and the extraction of spectra and time series for fainter sources, both with better signal-to-noise. Thanks to these enhancements, the quality of the catalogue products has been much improved over earlier catalogues. Furthermore, almost 50% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre to produce a much larger and better quality X-ray source catalogue. Methods. The XMM-Newton Survey Science Centre has developed a pipeline to reduce the XMM-Newton data automatically. Using the latest version of this pipeline, along with better calibration, a new version of the catalogue has been produced, using XMM-Newton X-ray observations made public on or before 2013 December 31. Manual screening of all of the X-ray detections ensures the highest data quality. This catalogue is known as 3XMM. Results. In the latest release of the 3XMM catalogue, 3XMM-DR5, there are 565 962 X-ray detections comprising 396 910 unique X-ray sources. Spectra and lightcurves are provided for the 133 000 brightest sources. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy bands, the total 0.2-12 keV band counts, and four hardness ratios. With the aim of identifying the detections, a cross correlation with 228 catalogues of sources detected in all wavebands is also provided for each X-ray detection. Conclusions. 3XMM-DR5 is the largest X-ray source catalogue ever produced. Thanks to the large array of data products associated with each detection and each source, it is an excellent resource for finding new and extreme objects.
Astronomy and Astrophysics | 2007
X. Barcons; Francisco J. Carrera; M. T. Ceballos; M. J. Page; J. Bussons-Gordo; A. Corral; J. Ebrero; S. Mateos; Jonathan A. Tedds; M. G. Watson; Darren S. Baskill; Mark Birkinshaw; Th. Boller; N. V. Borisov; Malcolm N. Bremer; G. E. Bromage; H. Brunner; A. Caccianiga; C. S. Crawford; Mark Cropper; R. Della Ceca; P. Derry; A. C. Fabian; P. Guillout; Yasuhiro Hashimoto; G. Hasinger; B. J. M. Hassall; Georg Lamer; N. Loaring; T. Maccacaro
Aims. X-ray sources at intermediate fluxes (a few x 10(-14) erg cm(-2) s(-1)) with a sky density of similar to 100 deg(-2) are responsible for a significant fraction of the cosmic X-ray background at various energies below 10 keV. The aim of this paper is to provide an unbiased and quantitative description of the X-ray source population at these fluxes and in various X-ray energy bands. Methods. We present the XMM-Newton Medium sensitivity Survey (XMS), including a total of 318 X-ray sources found among the serendipitous content of 25 XMM-Newton target fields. The XMS comprises four largely overlapping source samples selected at soft (0.5-2 keV), intermediate (0.5-4.5 keV), hard (2-10 keV) and ultra-hard (4.5-7.5 keV) bands, the first three of them being flux-limited. Results. We report on the optical identification of the XMS samples, complete to 85-95%. At the flux levels sampled by the XMS we find that the X-ray sky is largely dominated by Active Galactic Nuclei. The fraction of stars in soft X-ray selected samples is below 10%, and only a few per cent for hard selected samples. We find that the fraction of optically obscured objects in the AGN population stays constant at around 15-20% for soft and intermediate band selected X-ray sources, over 2 decades of flux. The fraction of obscured objects amongst the AGN population is larger (similar to 35-45%) in the hard or ultra-hard selected samples, and constant across a similarly wide flux range. The distribution in X-ray-to-optical flux ratio is a strong function of the selection band, with a larger fraction of sources with high values in hard selected samples. Sources with X-ray-to-optical flux ratios in excess of 10 are dominated by obscured AGN, but with a significant contribution from unobscured AGN.
Proceedings of SPIE | 2012
Roelof S. de Jong; Olga Bellido-Tirado; Cristina Chiappini; Éric Depagne; Roger Haynes; Diana Johl; Olivier Schnurr; A. D. Schwope; Jakob Walcher; Frank Dionies; Dionne M. Haynes; Andreas Kelz; Francisco S. Kitaura; Georg Lamer; Ivan Minchev; Volker Müller; Sebastián E. Nuza; Jean-Christophe Olaya; Tilmann Piffl; Emil Popow; Matthias Steinmetz; Ugur Ural; Mary E K Williams; R. Winkler; Lutz Wisotzki; Wolfgang R. Ansorge; Manda Banerji; Eduardo Gonzalez Solares; M. J. Irwin; Robert C. Kennicutt
4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with ~2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; ~1600 fibres go to two spectrographs with resolution R<5000 (λ~390-930 nm) and ~800 fibres to a spectrograph with R>18,000 (λ~392-437 nm and 515-572 nm and 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].
Astronomy and Astrophysics | 2008
S. Mateos; R. S. Warwick; Francisco J. Carrera; G. C. Stewart; J. Ebrero; R. Della Ceca; A. Caccianiga; R. Gilli; M. J. Page; Ezequiel Treister; Jonathan A. Tedds; M. G. Watson; Georg Lamer; Richard D. Saxton; H. Brunner; C. G. Page
Context. Our knowledge of the properties of AGN, especially those of optical type-2 objects, is very incomplete. Because extragalactic source count distributions are dependent on the cosmological and statistical properties of AGN, they provide a direct method of investigating the underlying source populations. Aims. We aim to constrain the extragalactic source count distributions over a broad range of X-ray fluxes and in various energy bands to test whether the predictions from X-ray background synthesis models agree with the observational constraints provided by our measurements. Methods. We have used 1129 XMM-Newton observations at |b| > 20 ◦ covering a total sky area of 132.3 deg 2 to compile the largest complete samples of X-ray selected objects to date both in the 0.5− 1k eV, 1− 2k eV, 2−4.5 keV, 4.5−10 keV bands employed in standard XMM-Newton data processing and in the 0.5−2 keV and 2−10 keV energy bands more usually considered in source count studies. Our survey includes in excess of 30 000 sources and spans fluxes from ∼10 −15 to 10 −12 erg cm −2 s −1 below 2 keV and from ∼10 −14 to 10 −12 erg cm −2 s −1 above 2 keV where the bulk of the cosmic X-ray background energy density is produced. Results. The very large sample size we obtained means our results are not limited by cosmic variance or low counting statistics. A break in the source count distributions was detected in all energy bands except the 4.5−10 keV band. We find that an analytical model comprising 2 power-law components cannot adequately describe the curvature seen in the source count distributions. The shape of the logN(>S ) − logS is strongly dependent on the energy band with a general steepening apparent as we move to higher energies. This is due to the fact that non-AGN populations, comprised mainly of stars and clusters of galaxies, contribute up to 30% of the source population at energies <2 keV and at fluxes ≥10 −13 erg cm −2 s −1 , and these populations of objects have significantly flatter source count distributions than AGN. We find a substantial increase in the relative fraction of hard X-ray sources at higher energies, from ≥55% below 2 keV to ≥77% above 2 keV. However, the majority of sources detected above 4.5 keV still have significant flux below 2 keV. Comparison with predictions from the synthesis models suggest that the models might be overpredicting the number of faint absorbed AGN, which would call for fine adjustment of some model parameters such as the obscured to unobscured AGN ratio and/or the distribution of column densities at intermediate obscuration.
Astronomy and Astrophysics | 2005
S. Mateos; X. Barcons; Francisco J. Carrera; M. T. Ceballos; A. Caccianiga; Georg Lamer; T. Maccacaro; M. J. Page; A. D. Schwope; M. G. Watson
We report on the results of a detailed analysis of the X-ray spectral properties of a large sample of sources detected serendipitously with the XMM-Newton observatory in 25 selected fields, for which optical identification is in progress. The survey covers a total solid angle of ∼3.5 deg 2 and contains 1137 sources with ∼10 −15 10 43 erg s −1 , and therefore classified as type 2 AGNs) is significantly higher (40%), with a hint of moderately higher columns. After correcting for absorption, we do not find evidence for a redshift evolution of the underlying power law index of BLAGNs, which stays roughly constant at Γ ∼ 1.9, with intrinsic dispersion of 0.4. A small fraction (∼7%) of BLAGNs and NELGs require the presence of a soft excess, that we model as a black body with temperature ranging from 0.1 to 0.3 keV. Comparing our results on absorption to popular X-ray background synthesis models, we find absorption in only ∼40% of the sources expected. This is due to a deficiency of heavily absorbed sources (with NH ∼ 10 22 −10 24 cm −2 ) in our sample in comparison with the models. We therefore conclude that the synthesis models require some revision in their specific parameters.
Astronomy and Astrophysics | 2007
Francisco J. Carrera; J. Ebrero; S. Mateos; M. T. Ceballos; A. Corral; X. Barcons; M. J. Page; S. R. Rosen; M. G. Watson; Jonathan A. Tedds; R. Della Ceca; T. Maccacaro; H. Brunner; Michael J. Freyberg; Georg Lamer; F. E. Bauer; Yoshihiro Ueda
Context. Recent results have revised upwards the total X-ray background (XRB) intensity below∼10 keV, therefore an accurate determination of the source counts is needed. There are also contradicting results on the clustering of X-ray selected sou rces. Aims. We have studied the X-ray source counts in four energy bands soft (0.5-2 keV), hard (2-10 keV), XID (0.5-4.5 keV) and ultra-hard (4.5-7.5 keV), to evaluate the contribution of s ources at different fluxes to the X-ray background. We have also studied the angular clustering of X-ray sources in those bands. Methods. AXIS (An XMM-Newton International Survey) is a survey of 36 high Galactic latitu de XMM-Newton observations covering 4.8 deg 2 and containing 1433 serendipitous X-ray sources detected with 5-σ significance. This survey has similar depth to the XMM-Newton catalogues and can serve as a pathfinder to explore their poss ibilities. We have combined this survey with shallower and deeper surveys, and fitted the source counts with a Maximu m Likelihood technique. Using only AXIS sources, we have studied the angular correlation using a novel robust technique. Results. Our source counts results are compatible with most previous samples in the soft, XID, ultra-hard and hard bands. We have improved on previous results in the latter band. The fractions of the XRB resolved in the surveys used in this work are 87%, 85%, 60% and 25% in the soft, hard, XID and ultra-hard bands, respectively. Extrapolation of our source counts to zero flux are n ot enough to saturate the XRB intensity. Only galaxies and/or absorbed AGN may be able contribute the remaining unresolved XRB intensity. Our results are compatible, within the errors, with recent r evisions of the XRB intensity in the soft and hard bands. The maximum fractional contribution to the XRB comes from fluxes within a bout a decade of the break in the source counts (∼ 10 −14 cgs), reaching ∼50% of the total in the soft and hard bands. Angular clustering (widely distributed over the sky and not confined to a few dee p fields) is detected at 99-99.9% significance in the soft and XID bands , with no detection in the hard and ultra-hard band (probably due to the smaller number of sources). We cannot confirm the detection o f significantly stronger clustering in the hard-spectrum ha rd sources. Conclusions. Medium depth surveys such as AXIS are essential to determine the evolution of the X-ray emission in the Universe below 10 keV.
Astronomy and Astrophysics | 2007
J. P. Dietrich; Thomas Erben; Georg Lamer; Peter Schneider; A. D. Schwope; Jan Hartlap; M. Maturi
The mass function of galaxy clusters is an important cosmological probe. Differences in the selection method could potentially lead to biases when determining the mass function. From the optical and X-ray data of the XMM-Newton Follow-Up Survey, we obtained a sample of galaxy cluster candidates using weak gravitational lensing, the optical Postman matched filter method, and a search for extended X-ray sources. We developed our weak-lensing search criteria by testing the performance of the aperture mass statistic on realistic ray-tracing simulations matching our survey parameters and by comparing two filter functions. We find that the dominant noise source for our survey is shape noise at almost all significance levels and that spurious cluster detections due to projections of large-scale structures are negligible, except possibly for highly significantly detected peaks. Our full cluster catalog has 155 cluster candidates, 116 found with the Postman matched filter, 59 extended X-ray sources, and 31 shear selected potential clusters. Most of these cluster candidates were not previously known. The present catalog will be a solid foundation for studying possible selection effects in either method.