Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Brunner is active.

Publication


Featured researches published by H. Brunner.


Astronomy and Astrophysics | 2009

The XMM-Newton serendipitous survey: V - The Second XMM-Newton serendipitous source catalogue

M. G. Watson; A. C. Schröder; D. Fyfe; C. G. Page; Georg Lamer; S. Mateos; J. P. Pye; Masaaki Sakano; S. R. Rosen; Jean Ballet; X. Barcons; D. Barret; Th. Boller; H. Brunner; M. Brusa; A. Caccianiga; Francisco J. Carrera; M. T. Ceballos; R. Della Ceca; Mark Denby; G. Denkinson; S. Dupuy; S. Farrell; F. Fraschetti; Michael J. Freyberg; P. Guillout; V. Hambaryan; T. Maccacaro; B. Mathiesen; Richard G. McMahon

Aims. Pointed observations with XMM-Newton provide the basis for creating catalogues of X-ray sources detected serendipitously in each field. This paper describes the creation and characteristics of the 2XMM catalogue. Methods. The 2XMM catalogue has been compiled from a new processing of the XMM-Newton EPIC camera data. The main features of the processing pipeline are described in detail. Results. The catalogue, the largest ever made at X-ray wavelengths, contains 246 897 detections drawn from 3491 public XMM-Newton observations over a 7-year interval, which relate to 191 870 unique sources. The catalogue fields cover a sky area of more than 500 deg(2). The non-overlapping sky area is similar to 360 deg(2) (similar to 1% of the sky) as many regions of the sky are observed more than once by XMM-Newton. The catalogue probes a large sky area at the flux limit where the bulk of the objects that contribute to the X-ray background lie and provides a major resource for generating large, well-defined X-ray selected source samples, studying the X-ray source population and identifying rare object types. The main characteristics of the catalogue are presented, including its photometric and astrometric properties


Astrophysical Journal Supplement Series | 2009

The Chandra COSMOS Survey, I: Overview and Point Source Catalog

M. Elvis; F. Civano; C. Vignali; S. Puccetti; F. Fiore; N. Cappelluti; T. Aldcroft; Antonella Fruscione; G. Zamorani; A. Comastri; M. Brusa; R. Gilli; Takamitsu Miyaji; F. Damiani; A. M. Koekemoer; Alexis Finoguenov; H. Brunner; Claudia M. Urry; J. D. Silverman; V. Mainieri; Guenther Hasinger; Richard E. Griffiths; Marcella Carollo; Heng Hao; L. Guzzo; A. W. Blain; Daniela Calzetti; C. L. Carilli; P. Capak; Stefano Ettori

The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg^2 of the COSMOS field (centered at 10 ^h , +02 ^o ) with an effective exposure of ~160 ks, and an outer 0.4 deg^2 area with an effective exposure of ~80 ks. The limiting source detection depths are 1.9 × 10^(–16) erg cm^(–2) s^(–1) in the soft (0.5-2 keV) band, 7.3 × 10^(–16) erg cm^(–2) s^(–1) in the hard (2-10 keV) band, and 5.7 × 10^(–16) erg cm^(–2) s^(–1) in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 × 10^(–5) (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily (~50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform (±12%) exposure across the inner 0.5 deg^2 field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.


Astrophysical Journal Supplement Series | 2007

The XMM-Newton Wide-Field Survey in the COSMOS Field. I. Survey Description

G. Hasinger; N. Cappelluti; H. Brunner; M. Brusa; A. Comastri; M. Elvis; Alexis Finoguenov; F. Fiore; A. Franceschini; R. Gilli; Richard E. Griffiths; I. Lehmann; V. Mainieri; G. Matt; I. Matute; Takamitsu Miyaji; S. Molendi; S. Paltani; D. B. Sanders; N. Z. Scoville; L. Tresse; Claudia M. Urry; P. Vettolani; G. Zamorani

We present the first set of XMM-Newton EPIC observations in the 2 deg^2 COSMOS field. The strength of the COSMOS project is the unprecedented combination of a large solid angle and sensitivity over the whole multiwavelength spectrum. The XMM-Newton observations are very efficient in localizing and identifying active galactic nuclei (AGNs) and clusters, as well as groups of galaxies. One of the primary goals of the XMM-Newton Cosmos survey is to study the coevolution of active galactic nuclei as a function of their environment in the cosmic web. Here we present the log of observations, images, and a summary of first research highlights for the first pass of 25 XMM-Newton pointings across the field. In the existing data set we have detected 1416 new X-ray sources in the 0.5-2, 2-4.5, and 4.5-10 keV bands to an equivalent 0.5-2 keV flux limit of 7 × 10^(-16) erg cm^(-2) s^(-1). The number of sources is expected to grow to almost 2000 in the final coverage of the survey. From an X-ray color-color analysis we identify a population of heavily obscured, partially leaky or reflecting absorbers, most of which are likely to be nearby, Compton-thick AGNs.


The Astrophysical Journal | 2009

ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI

J. D. Silverman; F. Lamareille; C. Maier; S. J. Lilly; V. Mainieri; M. Brusa; N. Cappelluti; G. Hasinger; G. Zamorani; M. Scodeggio; M. Bolzonella; T. Contini; C. M. Carollo; Knud Jahnke; Jean-Paul Kneib; O. Le Fèvre; Andrea Merloni; S. Bardelli; A. Bongiorno; H. Brunner; Karina Caputi; F. Civano; A. Comastri; G. Coppa; O. Cucciati; S. de la Torre; L. de Ravel; M. Elvis; A. Finoguenov; F. Fiore

We present a study of the host galaxies of AGN selected from the zCOSMOS survey to establish if accretion onto supermassive black holes and star formation are explicitly linked up to z~1. We identify 152 galaxies that harbor AGN, based on XMM observations of 7543 galaxies (i<22.5). Star formation rates (SFRs), including those weighted by stellar mass, are determined using the [OII]3727 emission-line, corrected for an AGN contribution. We find that the majority of AGN hosts have significant levels of star formation with a distribution spanning ~1-100 Msun yr^-1. The close association between AGN activity and star formation is further substantiated by an increase in the AGN fraction with the youthfulness of their stars as indicated by the rest-frame color (U-V) and spectral index Dn(4000); we demonstrate that mass-selection alleviates an artifical peak falling in the transition region when using luminosity-limited samples. We also find that the SFRs of AGN hosts evolve with cosmic time in a manner that closely mirrors the overall galaxy population and explains the low SFRs in AGNs (z<0.3) from the SDSS. We conclude that the conditions most conducive for AGN activity are a massive host galaxy and a large reservoir of gas. Furthermore, a direct correlation between mass accretion rate onto SMBHs and SFR is shown to be weak although the average ratio is constant with redshift, effectively shifting the evidence for a co-evolution scenario in a statistical manner to smaller physical scales. Our findings illustrate an intermittent scenario with an AGN lifetime substantially shorter than that of star formation and underlying complexities regarding fueling over vastly different physical scales yet to be determined [Abridged].


Astronomy and Astrophysics | 2009

The XMM-Newton wide-field survey in the COSMOS field - The point-like X-ray source catalogue

N. Cappelluti; M. Brusa; G. Hasinger; A. Comastri; G. Zamorani; A. Finoguenov; R. Gilli; S. Puccetti; Takamitsu Miyaji; M. Salvato; C. Vignali; T. Aldcroft; H. Böhringer; H. Brunner; F. Civano; M. Elvis; F. Fiore; Antonella Fruscione; Richard E. Griffiths; L. Guzzo; A. Iovino; Anton M. Koekemoer; V. Mainieri; N. Z. Scoville; Patrick Lynn Shopbell; J. D. Silverman; Claudia M. Urry

Context. The COSMOS survey is a multiwavelength survey aimed to study the evolution of galaxies, AGN and large scale structures. Within this survey XMM-COSMOS a powerful tool to detect AGN and galaxy clusters. The XMM-COSMOS is a deep X-ray survey over the full 2 deg^2 of the COSMOS area. It consists of 55 XMM-Newton pointings for a total exposure of ~1.5 Ms with an average vignetting-corrected depth of 40 ks across the field of view and a sky coverage of 2.13 deg^2. Aims. We present the catalogue of point-like X-ray sources detected with the EPIC CCD cameras, the log N − log S relations and the X-ray colour–colour diagrams. Methods. The analysis was performed using the XMM-SAS data analysis package in the 0.5–2 keV, 2–10 keV and 5–10 keV energy bands. Source detection has been performed using a maximum likelihood technique especially designed for raster scan surveys. The completeness of the catalogue as well as log N − log S and source density maps have been calibrated using Monte Carlo simulations. Results. The catalogs contains a total of 1887 unique sources detected in at least one band with likelihood parameter det_ml > 10. The survey, which shows unprecedented homogeneity, has a flux limit of ~1.7×10^(−15) erg cm^(−2) s^(−1), ~9.3×10^(−15) erg cm^(−2) s^(−1) and ~1.3×10^(−14) erg cm^(−2) s^(−1) over 90% of the area (1.92 deg^2) in the 0.5–2 keV, 2–10 keV and 5–10 keV energy band, respectively. Thanks to the rather homogeneous exposure over a large area, the derived log N − log S relations are very well determined over the flux range sampled by XMM-COSMOS. These relations have been compared with XRB synthesis models, which reproduce the observations with an agreement of ~10% in the 5–10 keV and 2–10 keV band, while in the 0.5–2 keV band the agreement is of the order of ~20%. The hard X-ray colors confirmed that the majority of the extragalactic sources in a bright subsample are actually type I or type II AGN. About 20% of the sources have a X-ray luminosity typical of AGN (L_X > 10^(42) erg/s) although they do not show any clear signature of nuclear activity in the optical spectrum.


Chemosphere | 1986

PCDDs and PCDFs in sewage sludge, river and lake sediments from south west Germany

Hanspaul Hagenmaier; H. Brunner; Roland Haag; A. Berchtold

Sewage sludges and sediments of rivers and lakes are sinks for “persistent” organic compounds entering the environment. These matrices are therefore useful in the assessment of local and global pollution with certain compounds or classes of compounds. In recent years we have analyzed sediments of the rivers Neckar, Rhine, and Danube, from Lake Constance, and samples of sewage sludge from municipal waste water treatment plants of south-west Germany for PAH, phthalates, organochlorine pesticides, and PCBs. 1 We have now analyzed a number of these samples for PCDDs and PCDFs. Isomer-specific analyses for 2,3,7,8-subsituted PCDDs/PCDFs were carried out in all cases. In all samples PCDDs could be detected, and in most cases PCDFs as well. 2,3,7,8-TCDD was never detected at a detection limit of 0.01 ppb. In sediments (14 samples) the total PCDDs ranged from 0.1 to 2.9 ppb and PCDFs from “not detectable” to 1.2 ppb. The highest concentration for a 2,3,7,8-substituted PCDD∗ was found for 1,2,3,6,7,8-hexaCDD with 0.06 ppb. In sewage sludges (15 samples) the total PCDDs ranged from 4 to 65 ppb and PCDFs from 1 to 7 ppb. The highest concentration for a 2,3,7,8-substituted PCDD∗ was found for 1,2,3,6,7,8-hexaCDD with 0.57 ppb. Comparison of PCDD/PCDF patterns of congeners and isomers for the sewage sludge and river sediment samples with those of stack gas emissions of waste incinerators and of pentachlorophenol allows the conclusion that the main source of PCDDs and PCDFs found in these samples is pentachlorophenol. Results of the Lake Constance sediment core indicate that here the atmospheric immission from waste incineration might be predominant.


Astronomy and Astrophysics | 2011

The XMM Deep survey in the CDF-S - I. First results on heavily obscured AGN

A. Comastri; P. Ranalli; Kazushi Iwasawa; C. Vignali; R. Gilli; I. Georgantopoulos; X. Barcons; W. N. Brandt; H. Brunner; M. Brusa; N. Cappelluti; Francisco J. Carrera; F. Civano; F. Fiore; G. Hasinger; V. Mainieri; Andrea Merloni; Fabrizio Nicastro; M. Paolillo; S. Puccetti; P. Rosati; J. D. Silverman; P. Tozzi; G. Zamorani; I. Balestra; F. E. Bauer; B. Luo; Y. Q. Xue

We present the first results of the spectroscopy of distant, o bscured AGN as obtained with the ultra‐deep (�3.3 Ms) XMM‐Newton survey in the Chandra Deep Field South (CDF‐S). One of the primary goals of the project is to characterize the X‐ray spectral properties of obscured and heavily obscured Compton‐thick AGN over the range of redhifts and luminosities that are relevant in terms of their contribution to the X‐ray background. The ultra‐deep exposure, coupled with the XMM detector’s spectral throughput, allowed us to accumulate good quality X‐ray spectra for a large number of X‐ray sources and, in particular, for heavily obscured AGN at cosmological redshifts. Specifically we present the X ‐ray spectral properties of two high‐redshift ‐ z= 1.53 and z=3.70 ‐


The Astrophysical Journal | 2016

The Chandra COSMOS Legacy survey: overview and point source catalog

F. Civano; S. Marchesi; A. Comastri; Meg Urry; M. Elvis; N. Cappelluti; S. Puccetti; M. Brusa; G. Zamorani; Guenther Hasinger; T. Aldcroft; D. M. Alexander; V. Allevato; H. Brunner; P. Capak; Alexis Finoguenov; F. Fiore; Antonella Fruscione; R. Gilli; K. Glotfelty; Richard E. Griffiths; Heng Hao; Fiona A. Harrison; Knud Jahnke; J. Kartaltepe; A. Karim; Stephanie M. LaMassa; G. Lanzuisi; Takamitsu Miyaji; P. Ranalli

The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg2 of the COSMOS field with an effective exposure of ≃ 160 ks over the central 1.5 deg^2 and of ≃ 80 ks in the remaining area. The survey is the combination of 56 new observations obtained as an X-ray Visionary Project with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2 × 10^(−5). We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft, and hard band). The limiting depths are 2.2 × 10^(−16), 1.5 × 10^(−15), and 8.9 × 10^(−16) erg cm^(-2)s^(-1) in the 0.5–2, 2–10, and 0.5–10 keV bands, respectively. The observed fraction of obscured active galactic nuclei with a column density >10^(22) cm^(−2) from the hardness ratio (HR) is 50_(-16)^(+17)%. Given the large sample we compute source number counts in the hard and soft bands, significantly reducing the uncertainties of 5%–10%. For the first time we compute number counts for obscured (HR > −0.2) and unobscured (HR < −0.2) sources and find significant differences between the two populations in the soft band. Due to the unprecedent large exposure, COSMOS-Legacy area is three times larger than surveys at similar depths and its depth is three times fainter than surveys covering similar areas. The area-flux region occupied by COSMOS-Legacy is likely to remain unsurpassed for years to come.


The Astrophysical Journal | 2009

THE ENVIRONMENTS OF ACTIVE GALACTIC NUCLEI WITHIN THE zCOSMOS DENSITY FIELD

J. D. Silverman; K. Kovac; C. Knobel; S. J. Lilly; M. Bolzonella; F. Lamareille; V. Mainieri; M. Brusa; N. Cappelluti; Y. Peng; G. Hasinger; G. Zamorani; M. Scodeggio; T. Contini; C. M. Carollo; Knud Jahnke; Jean-Paul Kneib; O. Le Fèvre; S. Bardelli; A. Bongiorno; H. Brunner; Karina Caputi; F. Civano; A. Comastri; G. Coppa; O. Cucciati; S. de la Torre; L. de Ravel; M. Elvis; A. Finoguenov

The impact of environment on AGN activity up to z~1 is assessed by utilizing a mass-selected sample of galaxies from the 10k catalog of the zCOSMOS spectroscopic redshift survey. We identify 147 AGN by their X-ray emission as detected by XMM-Newton from a parent sample of 7234 galaxies. We measure the fraction of galaxies with stellar mass M_*>2.5x10^10 Msun that host an AGN as a function of local overdensity using the 5th, 10th and 20th nearest neighbors that cover a range of physical scales (~1-4 Mpc). Overall, we find that AGNs prefer to reside in environments equivalent to massive galaxies with substantial levels of star formation. Specifically, AGNs with host masses between 0.25-1x10^11 Msun span the full range of environments (i.e., field-to-group) exhibited by galaxies of the same mass and rest-frame color or specific star formation rate. Host galaxies having M_*>10^11 Msun clearly illustrate the association with star formation since they are predominantly bluer than the underlying galaxy population and exhibit a preference for lower density regions analogous to SDSS studies of narrow-line AGN. To probe the environment on smaller physical scales, we determine the fraction of galaxies (M_*>2.5x10^10 Msun) hosting AGNs inside optically-selected groups, and find no significant difference with field galaxies. We interpret our results as evidence that AGN activity requires a sufficient fuel supply; the probability of a massive galaxy to have retained some sufficient amount of gas, as evidence by its ongoing star formation, is higher in underdense regions where disruptive processes (i.e., galaxy harrassment, tidal stripping) are lessened.


Astronomy and Astrophysics | 2007

The XMM-Newton serendipitous survey - IV. Optical identification of the XMM-Newton medium sensitivity survey (XMS)

X. Barcons; Francisco J. Carrera; M. T. Ceballos; M. J. Page; J. Bussons-Gordo; A. Corral; J. Ebrero; S. Mateos; Jonathan A. Tedds; M. G. Watson; Darren S. Baskill; Mark Birkinshaw; Th. Boller; N. V. Borisov; Malcolm N. Bremer; G. E. Bromage; H. Brunner; A. Caccianiga; C. S. Crawford; Mark Cropper; R. Della Ceca; P. Derry; A. C. Fabian; P. Guillout; Yasuhiro Hashimoto; G. Hasinger; B. J. M. Hassall; Georg Lamer; N. Loaring; T. Maccacaro

Aims. X-ray sources at intermediate fluxes (a few x 10(-14) erg cm(-2) s(-1)) with a sky density of similar to 100 deg(-2) are responsible for a significant fraction of the cosmic X-ray background at various energies below 10 keV. The aim of this paper is to provide an unbiased and quantitative description of the X-ray source population at these fluxes and in various X-ray energy bands. Methods. We present the XMM-Newton Medium sensitivity Survey (XMS), including a total of 318 X-ray sources found among the serendipitous content of 25 XMM-Newton target fields. The XMS comprises four largely overlapping source samples selected at soft (0.5-2 keV), intermediate (0.5-4.5 keV), hard (2-10 keV) and ultra-hard (4.5-7.5 keV) bands, the first three of them being flux-limited. Results. We report on the optical identification of the XMS samples, complete to 85-95%. At the flux levels sampled by the XMS we find that the X-ray sky is largely dominated by Active Galactic Nuclei. The fraction of stars in soft X-ray selected samples is below 10%, and only a few per cent for hard selected samples. We find that the fraction of optically obscured objects in the AGN population stays constant at around 15-20% for soft and intermediate band selected X-ray sources, over 2 decades of flux. The fraction of obscured objects amongst the AGN population is larger (similar to 35-45%) in the hard or ultra-hard selected samples, and constant across a similarly wide flux range. The distribution in X-ray-to-optical flux ratio is a strong function of the selection band, with a larger fraction of sources with high values in hard selected samples. Sources with X-ray-to-optical flux ratios in excess of 10 are dominated by obscured AGN, but with a significant contribution from unobscured AGN.

Collaboration


Dive into the H. Brunner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Lamer

Leibniz Institute for Astrophysics Potsdam

View shared research outputs
Top Co-Authors

Avatar

R. Staubert

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

V. Mainieri

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Brusa

University of Bologna

View shared research outputs
Top Co-Authors

Avatar

Takamitsu Miyaji

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Francisco J. Carrera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

X. Barcons

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge