Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georg Rast is active.

Publication


Featured researches published by Georg Rast.


Neuropharmacology | 2012

Inhibition of acetylcholinesterase and phosphodiesterase-9A has differential effects on hippocampal early and late LTP.

Katja S. Kroker; Georg Rast; Riccardo Giovannini; Anelise Marti; Cornelia Dorner-Ciossek; Holger Rosenbrock

Donepezil is the current standard symptomatic treatment of mild-to-moderate Alzheimers disease (AD) patients. It aims to compensate for the deficit in cholinergic neurotransmission by blocking acetylcholinesterase (AChE) and thus increases the concentration of extracellular acetylcholine. However, experience from clinical practice demonstrated that AChE inhibitors only have moderate treatment effects. As a potential new approach for memory enhancement, inhibition of specific phosphodiesterases (PDEs) has gained attention. Among those are PDE9A inhibitors which increase the levels of the second messenger cyclic guanosine monophosphate (cGMP) intracellularly. In order to gain more insight into the potential impact of extracellularly acting AChEs and intracellularly acting PDE9A inhibitors on synaptic plasticity, we analyzed the effects of the AChE inhibitor donepezil and the PDE9A inhibitor BAY 73-6691 on long-term potentiation (LTP) in rat hippocampal slices, a widely accepted cellular experimental model of memory formation. Generally, LTP can be differentiated into an early and a late form, being protein-synthesis independent and protein-synthesis dependent, respectively. Donepezil was found to increase early LTP, but did not affect late LTP. In contrast, BAY 73-6691 demonstrated enhancing effects on both early and late LTP and even transformed early into late LTP. Furthermore, it was shown that this transformation into late LTP was dependent on the NO-cGMP-PKG pathway. In conclusion, this study demonstrates that BAY 73-6691 exhibits a stronger effect in enhancing and prolonging LTP than donepezil suggesting that PDE9 inhibition might be more efficacious in enhancing learning and memory.


Journal of Chemical Information and Modeling | 2009

Bias-correction of regression models: a case study on hERG inhibition.

Katja Hansen; Fabian Rathke; Timon Schroeter; Georg Rast; Thomas Fox; Jan M. Kriegl; Sebastian Mika

In the present work we develop a predictive QSAR model for the blockade of the hERG channel. Additionally, this specific end point is used as a test scenario to develop and evaluate several techniques for fusing predictions from multiple regression models. hERG inhibition models which are presented here are based on a combined data set of roughly 550 proprietary and 110 public domain compounds. Models are built using various statistical learning techniques and different sets of molecular descriptors. Single Support Vector Regression, Gaussian Process, or Random Forest models achieve root mean-squared errors of roughly 0.6 log units as determined from leave-group-out cross-validation. An analysis of the evaluation strategy on the performance estimates shows that standard leave-group-out cross-validation yields overly optimistic results. As an alternative, a clustered cross-validation scheme is introduced to obtain a more realistic estimate of the model performance. The evaluation of several techniques to combine multiple prediction models shows that the root mean squared error as determined from clustered cross-validation can be reduced from 0.73 +/- 0.01 to 0.57 +/- 0.01 using a local bias correction strategy.


Journal of Neuroscience Methods | 2011

A multi-slice recording system for stable late phase hippocampal long-term potentiation experiments

Katja S. Kroker; Holger Rosenbrock; Georg Rast

A major challenge in neuroscience is identifying the cellular and molecular processes underlying learning and memory formation. In the past decades, significant progress has been made in understanding cellular and synaptic mechanisms underlying hippocampal learning and memory using long-term potentiation (LTP) experiments in brain slices as a model system. To expedite LTP measurements it is helpful to further optimize such recording systems. Here, we describe a modification of a multi-slice recording system (SliceMaster, Scientifica Limited, East Sussex, UK) that allows absolutely stable measurements of field excitatory postsynaptic potentials (fEPSPs) for up to 8 h in up to eight slices simultaneously. The software Notocord(®) was used for on-line data acquisition and to control the digital pattern generator which can generate different patterns for slice stimulation, inducing different types of LTP. Moreover, in contrast to common gravity-driven perfusion systems, a Pumped Perfusion System was employed to recycle drug solutions applied to the hippocampal slice. In addition, slices were positioned on two stacked grids for optimal recording of fEPSPs. These two stacked grids were placed in the measuring chambers allowing recordings for several hours without any perturbances. In summary, this modified slice-recording system improves throughput and allows for better statistical design, increases number of used slices per animal and enables very robust LTP measurements for up to 7 h. Hence, this system is suitable not only to investigate molecular mechanisms underlying the late phase of LTP, but also to screen candidate compounds in the context of drug discovery.


Neuropharmacology | 2011

Differential effect of the mGlu5 receptor positive allosteric modulator ADX-47273 on early and late hippocampal LTP.

Katja S. Kroker; Georg Rast; Holger Rosenbrock

Conflicting findings are reported in the literature about the involvement of the mGlu5 receptor in hippocampal long-term potentiation (LTP), which might be a consequence of different sub-types of LTP induced by the investigators due to the specific experimental conditions used. A comparable controversy came up in the past concerning the influence of different experimental conditions on the involvement of L-type voltage dependent calcium channels (L-VDCCs) and NMDA receptors in hippocampal LTP. In this study, two stimulation protocols with otherwise identical conditions were used to probe modulatory effects of mGlu5 receptor activation in NMDA receptor and L-VDCCs dependent CA1 LTP: weak high frequency stimulation (20 stimuli at 100 Hz) to induce early LTP and repeated strong high frequency stimulation (3 times 100 stimuli at 100 Hz with 5 min interval) to induce late LTP, which - in contrast to early LTP - was shown to be protein-synthesis dependent. Using the NMDA receptor antagonist MK-801 and the L-type calcium channel blocker nifedipine, early LTP was shown to be dependent on NMDA receptors only, whereas late LTP was demonstrated to be dependent on NMDA receptors and L-VDCCs in about equal parts. Moreover, late LTP, but not early LTP, was increased by the mGlu5 receptor positive allosteric modulator ADX-47273, indicating that artificial augmentation of mGlu5 receptor activation by endogenous glutamate may boost the protein-synthesis dependent form of LTP but not the protein-synthesis independent form.


Brain Research Bulletin | 2013

Restoring long-term potentiation impaired by amyloid-beta oligomers: comparison of an acetylcholinesterase inhibitior and selective neuronal nicotinic receptor agonists.

Katja S. Kroker; Jens Moreth; Lothar Kussmaul; Georg Rast; Holger Rosenbrock

As nicotinic acetylcholine receptor (nAChR) agonists directly address cholinergic neurotransmission with potential impact on glutamatergic function, they are considered as potential new symptomatic treatment options for Alzheimers disease compared to the indirectly operating acetylcholinesterase inhibitors such as the current gold standard donepezil. In order to evaluate the therapeutic value of nAChR activation to ameliorate cognitive dysfunction, a direct comparison between α4β2, α7 nAChR agonists, and donepezil was performed on the level of an ex vivo experimental model of impaired memory formation. First, we demonstrated that amyloid beta (Aβ)42 oligomers, which are believed to be the synaptotoxic Aβ-species causally involved in the pathophysiology of Alzheimers disease, have a detrimental effect on long-term potentiation (LTP) in the CA1 region of rat hippocampal slices, a widely used cellular model of learning and memory. Second, we investigated the potential of donepezil, the α4β2 nAChR agonist TC-1827 and the α7 nAChR partial agonist SSR180711 to reverse Aβ42 oligomer induced LTP impairment. Donepezil showed only a slight reversal of Aβ42 oligomer induced impairment of early LTP, and had no effect on Aβ42 oligomer induced impairment of late LTP. The same was demonstrated for the α4β2 nAChR agonist TC-1827. In contrast, the α7 nAChR partial agonist SSR180711 completely rescued early as well as late LTP impaired by Aβ42 oligomers. As activating α7 nAChRs was found to be most efficacious in restoring Aβ42 oligomer induced LTP deficits, targeting α7 nAChRs might represent a powerful alternative approach for symptomatic treatment of AD.


Journal of Pharmacology and Experimental Therapeutics | 2016

BI 1002494, a Novel Potent and Selective Oral Spleen Tyrosine Kinase Inhibitor, Displays Differential Potency in Human Basophils and B Cells

David James Lamb; Stefan Lutz Wollin; Andreas Schnapp; Daniel Bischoff; Klaus J. Erb; Thierry Bouyssou; Bernd Guilliard; Christine Strasser; Eva Wex; Sylvia Blum; Eva Thaler; Helga Nickel; Oliver Radmacher; Hannah Haas; Jennifer Swantek; Don Souza; Melissa Canfield; Della White; Mark Panzenbeck; Mohammed A. Kashem; Mary Sanville-Ross; Takeshi Kono; Katherina Sewald; Armin Braun; Helena Obernolte; Olga Danov; Gerhard Schaenzle; Georg Rast; Gerd-Michael Maier; Matthias Hoffmann

BI 1002494 [(R)-4-{(R)-1-[7-(3,4,5-trimethoxy-phenyl)-[1,6]napthyridin-5-yloxy]-ethyl}pyrrolidin-2-one] is a novel, potent, and selective spleen tyrosine kinase (SYK) inhibitor with sustained plasma exposure after oral administration in rats, which qualifies this molecule as a good in vitro and in vivo tool compound. BI 1002494 exhibits higher potency in inhibiting high-affinity IgE receptor–mediated mast cell and basophil degranulation (IC50 = 115 nM) compared with B-cell receptor–mediated activation of B cells (IC50 = 810 nM). This may be explained by lower kinase potency when the physiologic ligand B-cell linker was used, suggesting that SYK inhibitors may exhibit differential potency depending on the cell type and the respective signal transduction ligand. A 3-fold decrease in potency was observed in rat basophils (IC50 = 323 nM) compared with human basophils, but a similar species potency shift was not observed in B cells. The lower potency in rat basophils was confirmed in both ex vivo inhibition of bronchoconstriction in precision-cut rat lung slices and in reversal of anaphylaxis-driven airway resistance in rats. The different cellular potencies translated into different in vivo efficacy; full efficacy in a rat ovalbumin model (that contains an element of mast cell dependence) was achieved with a trough plasma concentration of 340 nM, whereas full efficacy in a rat collagen-induced arthritis model (that contains an element of B-cell dependence) was achieved with a trough plasma concentration of 1400 nM. Taken together, these data provide a platform from which different estimates of human efficacious exposures can be made according to the relevant cell type for the indication intended to be treated.


MedChemComm | 2015

Discovery of novel amino-pyrimidine inhibitors of the insulin-like growth factor 1 (IGF1R) and insulin receptor (INSR) kinases; parallel optimization of cell potency and hERG inhibition

Heather Tye; Ulrich Guertler; Marco H. Hofmann; Moriz Mayer; Sandeep Pal; Georg Rast; Michael P. Sanderson; Otmar Schaaf; Matthias Treu; Stephan Karl Zahn

The insulin-like growth factor-1 receptor (IGF1R) and closely related insulin receptor (INSR) are receptor tyrosine kinases which have been postulated to play a role in the tumorigenesis of certain cancers. Strategies for inhibiting oncogenic signalingvia the IGF1R and INSR include IGF1R antibodies, IGF1/2 antibodies and dual IGF1R/INSR tyrosine kinase inhibitors (TKIs). IGF1R/INSR TKIs linsitinib (OSI-906) and BMS-754807 have progressed to phase II/III clinical studies in cancer patients. We describe here our efforts to develop small molecule dual inhibitors of the IGF1R/INSR receptor kinases based on an amino-pyrimidine structural class. Our main focus was the parallel optimization of cellular potency and off target activity (principally hERG inhibition) through modulation of physicochemical properties and introduction of key structural motifs using a matched molecular pairs approach and hERG homology model.


Journal of Pharmacological and Toxicological Methods | 2016

Influence of field potential duration on spontaneous beating rate of human induced pluripotent stem cell-derived cardiomyocytes: Implications for data analysis and test system selection

Georg Rast; Udo Kraushaar; Sandra Buckenmaier; Carina Ittrich; Brian Guth

INTRODUCTION Field potential duration in human pluripotent stem cell (hiPSC)-derived cardiomyocytes is discussed as parameter for the assessment of drug-induced delayed repolarization. In spontaneously beating hiPSC-derived cardiomyocytes field potential duration varies depending on beating rate but beating rate can also be influenced by field potential duration. This interdependence is not fully understood and therefore mandates careful data analysis and cautious interpretation of the results. METHODS We analysed data from several types of hiPSC-derived cardiomyocytes and, for comparison, primary embryonic chick cardiomyocytes using reference compounds to study the relationship between spontaneous rate and field potential duration. Based on such data we developed a method based on a regression model of drug-induced changes in the inter-beat interval versus changes in the field potential duration to distinguish primary rate from repolarisation effects. RESULTS We demonstrate the application of this approach with reference and research compounds. Cells from different sources differed with regard to the direct or indirect effects of reference compounds on spontaneous beating. All cell types showed an adaptation of field potential duration upon rate changes induced by reference compounds, however, the adaptation of the spontaneous rate after compound-induced changes in field potential duration varied considerably between cell types. DISCUSSION As shown by comparison with data from guinea pig papillary muscle, an ex vivo model with a fixed stimulation rate, this approach is more appropriate than the application of correction algorithms routinely used for in vivo data since such algorithms do not account for a dependence of rate on field potential duration.


Bioorganic & Medicinal Chemistry Letters | 2015

Rodent selectivity of piperidine-4-yl-1H-indoles, a series of CC chemokine receptor-3 (CCR3) antagonists: insights from a receptor model.

Jan M. Kriegl; Domnic Martyres; Marc Grundl; Ralf Anderskewitz; Horst Dollinger; Georg Rast; Bernhard Schmid; Peter Seither; Christofer S. Tautermann

Rodent selectivity data of piperidine-4-yl-1H-indoles, a series of CC chemokine receptor-3 (CCR3) antagonists, are presented and discussed as part of an overall optimization effort within this lead compound class. Although attachment of an acidic moiety to the 1-position of the indole led to an overall balanced in vitro profile, in particular reducing inhibition of the hERG channel, potency on the rat and mouse receptor worsened. These findings could be rationalized in the context of a CCR3 homology model.


Journal of Pharmacological and Toxicological Methods | 2014

Solubility assessment and on-line exposure confirmation in a patch-clamp assay for hERG (human ether-a-go-go-related gene) potassium channel inhibition.

Georg Rast; Brian Guth

INTRODUCTION The hERG (human ether-a-go-go-related gene) potassium channel (KV11.1) is an important anti-target in drug discovery as its inhibition by small molecules has considerable promiscuity and is linked to an increased risk of the potentially fatal ventricular arrhythmia torsade de pointes. Therefore, great efforts are taken in the pharmaceutical industry to early on screen out compounds that block the channel. Early screening activities most often include compounds with sub-optimal physicochemical properties such as limited solubility. Therefore, careful monitoring of achieved compound concentration importantly supports the validity of experimental data. METHODS A novel principle of exposure confirmation in a constant flow patch-clamp assay for hERG interaction is presented. Quantification is based on-real time UV absorption spectroscopy of the perfusion solution using long light path fiber optic flow cells. Calibration is performed using solutions which are confirmed by turbidometry to be free of precipitates. RESULTS Turbidometry is shown to be sensitive enough to ensure valid calibration of the UV spectroscopic measurement. For a typical drug-like small molecule (verapamil) it is shown that even 30 nM can be accurately quantified using a 100 cm fiber optic flow cell. DISCUSSION The combination of turbidometry and long light path fiber optic UV spectroscopy offers accurate, almost real-time exposure determination in a wide range of concentrations with little effort, affordable instrumentation, and no delay for data reporting. For research compounds with challenging physicochemical properties this method provides valuable data to support the validity of the measurements.

Collaboration


Dive into the Georg Rast's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge