Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Seither is active.

Publication


Featured researches published by Peter Seither.


Journal of Clinical Investigation | 2006

Autocrine PDGFR signaling promotes mammary cancer metastasis

Martin Jechlinger; Andreas Sommer; Richard Moriggl; Peter Seither; Norbert Kraut; Paola Capodiecci; Michael J. Donovan; Carlos Cordon-Cardo; Hartmut Beug; Stefan Grünert

Metastasis is the major cause of cancer morbidity, but strategies for direct interference with invasion processes are lacking. Dedifferentiated, late-stage tumor cells secrete multiple factors that represent attractive targets for therapeutic intervention. Here we show that metastatic potential of oncogenic mammary epithelial cells requires an autocrine PDGF/PDGFR loop, which is established as a consequence of TGF-beta-induced epithelial-mesenchymal transition (EMT), a faithful in vitro correlate of metastasis. The cooperation of autocrine PDGFR signaling with oncogenic Ras hyperactivates PI3K and is required for survival during EMT. Autocrine PDGFR signaling also contributes to maintenance of EMT, possibly through activation of STAT1 and other distinct pathways. Inhibition of PDGFR signaling interfered with EMT and caused apoptosis in murine and human mammary carcinoma cell lines. Consequently, overexpression of a dominant-negative PDGFR or application of the established cancer drug STI571 interfered with experimental metastasis in mice. Similarly, in mouse mammary tumor virus-Neu (MMTV-Neu) transgenic mice, TGF-beta enhanced metastasis of mammary tumors, induced EMT, and elevated PDGFR signaling. Finally, expression of PDGFRalpha and -beta correlated with invasive behavior in human mammary carcinomas. Thus, autocrine PDGFR signaling plays an essential role during cancer progression, suggesting a novel application of STI571 to therapeutically interfere with metastasis.


Oncogene | 2003

Expression profiling of epithelial plasticity in tumor progression

Martin Jechlinger; Stefan Grünert; Ido H Tamir; Elzbieta Janda; Susanna Lüdemann; Thomas Waerner; Peter Seither; Andreas Weith; Hartmut Beug; Norbert Kraut

Epithelial-to-mesenchymal transition (EMT), a switch of polarized epithelial cells to a migratory, fibroblastoid phenotype, is increasingly considered as an important event during malignant tumor progression and metastasis. To identify molecular players involved in EMT and metastasis, we performed expression profiling of a set of combined in vitro/in vivo cellular models, based on clonal, fully polarized mammary epithelial cells. Seven closely related cell pairs were used, which were modified by defined oncogenes and/or external factors and showed specific aspects of epithelial plasticity relevant to cell migration, local invasion and metastasis. Since mRNA levels do not necessarily reflect protein levels in cells, we used an improved expression profiling method based on polysome-bound RNA, suitable to analyse global gene expression on Affymetrix chips. A substantial fraction of all regulated genes was found to be exclusively controlled at the translational level. Furthermore, profiling of the above multiple cell pairs allowed one to identify small numbers of genes by cluster analysis, specifically correlating gene expression with EMT, metastasis, scattering and/or oncogene function. A small set of genes specifically regulated during EMT was identified, including key regulators and signaling pathways involved in cell proliferation, epithelial polarity, survival and trans-differentiation to mesenchymal-like cells with invasive behavior.


Journal of Inflammation | 2005

Characterization of Toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C) on the regulation of Toll-like receptors, adaptor proteins and inflammatory response

Mirko Ritter; Detlev Mennerich; Andreas Weith; Peter Seither

BackgroundBacterial and viral exacerbations play a crucial role in a variety of lung diseases including COPD or asthma. Since the lung epithelium is a major source of various inflammatory mediators that affect the immune response, we analyzed the inflammatory reaction of primary lung epithelial cells to different microbial molecules that are recognized by Toll-like receptors (TLR).MethodsThe effects of TLR ligands on primary small airway epithelial cells were analyzed in detail with respect to cytokine, chemokine and matrix metalloproteinase secretion. In addition, the regulation of the expression of TLRs and their adaptor proteins in small airway epithelial cells was investigated.ResultsOur data demonstrate that poly(I:C), a synthetic analog of viral dsRNA, mediated the strongest proinflammatory effects among the tested ligands, including an increased secretion of IL-6, IL-8, TNF-α, GM-CSF, GRO-α, TARC, MCP-1, MIP-3α, RANTES, IFN-β, IP-10 and ITAC as well as an increased release of MMP-1, MMP-8, MMP-9, MMP-10 and MMP-13. Furthermore, our data show that poly(I:C) as well as type-1 and type-2 cytokines have a pronounced effect on the expression of TLRs and molecules involved in TLR signaling in small airway epithelial cells. Poly(I:C) induced an elevated expression of TLR1, TLR2 and TLR3 and increased the gene expression of the general TLR adaptor MyD88 and IRAK-2. Simultaneously, poly(I:C) decreased the expression of TLR5, TLR6 and TOLLIP.ConclusionPoly(I:C), an analog of viral dsRNA and a TLR3 ligand, triggers a strong inflammatory response in small airway epithelial cells that is likely to contribute to viral exacerbations of pulmonary diseases like asthma or COPD. The pronounced effects of poly(I:C) on the expression of Toll-like receptors and molecules involved in TLR signaling is assumed to influence the immune response of the lung epithelium to viral and bacterial infections. Likewise, the regulation of TLR expression by type-1 and type-2 cytokines is important considering the impact of exogenous and endogenous TLR ligands on Th1 or Th2 driven pulmonary inflammations like COPD or asthma, respectively.


Journal of Biomolecular Screening | 2007

Pharmacological profiling of chemokine receptor-directed compounds using high-content screening.

Dorothea Haasen; Susanne Merk; Peter Seither; Domnic Martyres; Silke Hobbie; Ralf Heilker

High-content screening, typically defined as automated fluorescence microscopy combined with image analysis, is now well established as a means to study test compound effects in cellular disease-modeling systems. In this work, the authors establish several high-content screening assays in the 384-well format to measure the activation of the CC-type chemokine receptors 2B and 3 (CCR2B, CCR3). As a cellular model system, the authors use Chinese hamster ovary cells, stably transfected with 1 of the respective receptors. They characterize receptor stimulation by human monocyte chemoattractant protein-1 for CCR2B and by human eotaxin-1 for CCR3: Receptor internalization and receptor-induced phosphorylation of ERK1/2 (pERK) were quantified using fluorescence imaging and image analysis. The 4 assay formats were robust, displayed little day-to-day variability, and delivered good Z′ statistics for both CCRs. For each of the 2 receptors, the authors evaluated the potency of inhibitory compounds in the internalization format and the pERK assay and compared the results with those from other assays (ligand displacement binding, Ca2+ mobilization, guanosine triphosphate exchange, chemotaxis). Both physiological agonists and test compounds differed significantly with respect to potencies and efficacies in the various profiling assays. The diverse assay formats delivered partially overlapping and partially complementary information, enabling the authors to reduce the probability of test compound—related technology artifacts and to specify the mode of action for individual test compounds. Transfer of the high-content screening format to a fully automated medium-throughput screening platform for CCR3 enabled the profiling of large compound numbers with respect to G protein signaling and possible tolerance-inducing liabilities. (Journal of Biomolecular Screening 2008:40-53)


Bioorganic & Medicinal Chemistry Letters | 2015

Rodent selectivity of piperidine-4-yl-1H-indoles, a series of CC chemokine receptor-3 (CCR3) antagonists: insights from a receptor model.

Jan M. Kriegl; Domnic Martyres; Marc Grundl; Ralf Anderskewitz; Horst Dollinger; Georg Rast; Bernhard Schmid; Peter Seither; Christofer S. Tautermann

Rodent selectivity data of piperidine-4-yl-1H-indoles, a series of CC chemokine receptor-3 (CCR3) antagonists, are presented and discussed as part of an overall optimization effort within this lead compound class. Although attachment of an acidic moiety to the 1-position of the indole led to an overall balanced in vitro profile, in particular reducing inhibition of the hERG channel, potency on the rat and mouse receptor worsened. These findings could be rationalized in the context of a CCR3 homology model.


Proteomics | 2005

Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification

Dietrich Merkel; Wolfgang Rist; Peter Seither; Andreas Weith; Martin Lenter


Biochemical and Biophysical Research Communications | 2005

Elevated expression of TARC (CCL17) and MDC (CCL22) in models of cigarette smoke-induced pulmonary inflammation

Mirko Ritter; Rolf Göggel; Nveed Chaudhary; Alexander Wiedenmann; Birgit Jung; Andreas Weith; Peter Seither


Archive | 2001

Method for identifying substances which positively influence inflammatory conditions of chronic inflammatory airway diseases

Birgit Jung; Norbert Kraut; Stefan Mueller; Barbara Kistler; Peter Seither; Karsten Quast; Andreas Weith


Archive | 2012

Pyrazole compounds as crth2 antagonists

Ralf Anderskewitz; Domnic Martyres; Thorsten Oost; Wolfgang Rist; Peter Seither


Archive | 2010

Substituted piperidines as CCR3 antagonists

Marc Grundl; Horst Dollinger; Riccardo Giovannini; Christoph Hoenke; Matthias Hoffmann; Jan M. Kriegl; Domnic Martyres; Georg Rast; Peter Seither

Collaboration


Dive into the Peter Seither's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge