Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georg Reifferscheid is active.

Publication


Featured researches published by Georg Reifferscheid.


Environmental Sciences Europe | 2014

Microplastics in freshwater ecosystems: what we know and what we need to know

Martin Wagner; Christian Scherer; Diana Álvarez-Muñoz; Nicole Brennholt; Xavier Bourrain; Sebastian Buchinger; Elke Fries; Cécile Grosbois; Jörg Klasmeier; Teresa Marti; Sara Rodriguez-Mozaz; Ralph Urbatzka; A. Dick Vethaak; Margrethe Winther-Nielsen; Georg Reifferscheid

BackgroundWhile the use of plastic materials has generated huge societal benefits, the ‘plastic age’ comes with downsides: One issue of emerging concern is the accumulation of plastics in the aquatic environment. Here, so-called microplastics (MP), fragments smaller than 5xa0mm, are of special concern because they can be ingested throughout the food web more readily than larger particles. Focusing on freshwater MP, we briefly review the state of the science to identify gaps of knowledge and deduce research needs.State of the scienceEnvironmental scientists started investigating marine (micro)plastics in the early 2000s. Today, a wealth of studies demonstrates that MP have ubiquitously permeated the marine ecosystem, including the polar regions and the deep sea. MP ingestion has been documented for an increasing number of marine species. However, to date, only few studies investigate their biological effects.The majority of marine plastics are considered to originate from land-based sources, including surface waters. Although they may be important transport pathways of MP, data from freshwater ecosystems is scarce. So far, only few studies provide evidence for the presence of MP in rivers and lakes. Data on MP uptake by freshwater invertebrates and fish is very limited.Knowledge gapsWhile the research on marine MP is more advanced, there are immense gaps of knowledge regarding freshwater MP. Data on their abundance is fragmentary for large and absent for small surface waters. Likewise, relevant sources and the environmental fate remain to be investigated. Data on the biological effects of MP in freshwater species is completely lacking. The accumulation of other freshwater contaminants on MP is of special interest because ingestion might increase the chemical exposure. Again, data is unavailable on this important issue.ConclusionsMP represent freshwater contaminants of emerging concern. However, to assess the environmental risk associated with MP, comprehensive data on their abundance, fate, sources, and biological effects in freshwater ecosystems are needed. Establishing such data critically depends on a collaborative effort by environmental scientists from diverse disciplines (chemistry, hydrology, ecotoxicology, etc.) and, unsurprisingly, on the allocation of sufficient public funding.


Environmental Sciences Europe | 2015

The European technical report on aquatic effect-based monitoring tools under the water framework directive

Ann-Sofie Wernersson; Mario Carere; Chiara Maggi; Petr Tusil; Premysl Soldan; Alice James; Wilfried Sanchez; Valeria Dulio; Katja Broeg; Georg Reifferscheid; Sebastian Buchinger; Hannie Maas; Esther Van Der Grinten; Simon O’Toole; Antonella Ausili; Loredana Manfra; Laura Marziali; Stefano Polesello; Ines Lacchetti; Laura Mancini; Karl Lilja; Maria Linderoth; Tove Lundeberg; Bengt Fjällborg; Tobias Porsbring; D. G. Joakim Larsson; Johan Bengtsson-Palme; Lars Förlin; Cornelia Kienle; Petra Kunz

The Water Framework Directive (WFD), 2000/60/EC, requires an integrated approach to the monitoring and assessment of the quality of surface water bodies. The chemical status assessment is based on compliance with legally binding Environmental Quality Standards (EQSs) for selected chemical pollutants (priority substances) of EU-wide concern. In the context of the mandate for the period 2010 to 2012 of the subgroup Chemical Monitoring and Emerging Pollutants (CMEP) under the Common Implementation Strategy (CIS) for the WFD, a specific task was established for the elaboration of a technical report on aquatic effect-based monitoring tools. The activity was chaired by Sweden and co-chaired by Italy and progressively involved several Member States and stakeholders in an EU-wide drafting group. The main aim of this technical report was to identify potential effect-based tools (e.g. biomarkers and bioassays) that could be used in the context of the different monitoring programmes (surveillance, operational and investigative) linking chemical and ecological status assessment. The present paper summarizes the major technical contents and findings of the report.


Environmental Science & Technology | 2011

Polar Compounds Dominate in Vitro Effects of Sediment Extracts

U. Lubecke-von Varel; Miroslav Machala; Miroslav Ciganek; Jiri Neca; Katerina Pencikova; L. Palkova; Jan Vondráček; I. Löffler; Georg Streck; Georg Reifferscheid; S. Flueckiger-Isler; Jana M. Weiss; M.H. Lamoree; Werner Brack

Sediment extracts from three polluted sites of the river Elbe basin were fractionated using a novel online fractionation procedure. Resulting fractions were screened for mutagenic, aryl hydrocarbon receptor (AhR)-mediated, transthyretin (TTR)-binding, and estrogenic activities and their potency to inhibit gap junctional intercellular communication (GJIC) to compare toxicity patterns and identify priority fractions. Additionally, more than 200 compounds and compound classes were identified using GC-MS/MS, LC-MS/MS, and HPLC-DAD methods. For all investigated end points, major activities were found in polar fractions, which are defined here as fractions containing dominantly compounds with at least one polar functional group. Nonpolar PAH fractions contributed to mutagenic and AhR-mediated activities while inhibition of GJIC and estrogenic and TTR-binding activities were exclusively observed in the polar fractions. Known mutagens in polar fractions included nitro- and dinitro-PAHs, azaarenes, and keto-PAHs, while parent and monomethylated PAHs such as benzo[a]pyrene and benzofluoranthenes were identified in nonpolar fractions. Additionally, for one sample, high AhR-mediated activities were determined in one fraction characterized by PCDD/Fs, PCBs, and PCNs. Estrone, 17β-estradiol, 9H-benz[de]anthracen-7-one, and 4-nonylphenol were identified as possible estrogenic and TTR-binding compounds. Thus, not only nonpolar compounds such as PAHs, PCBs, and PCDD/Fs but also the less characterized and investigated more polar substances should be considered as potent mutagenic, estrogenic, AhR-inducing, TTR-binding, and GJIC-inhibiting components for future studies.


Environmental and Molecular Mutagenesis | 2012

International round‐robin study on the Ames fluctuation test

Georg Reifferscheid; Hanna Maes; B. Allner; J. Badurova; Shimshon Belkin; Kerstin Bluhm; F. Brauer; J. Bressling; S. Domeneghetti; T. Elad; S. Flückiger-Isler; H.J. Grummt; R. Gürtler; A. Hecht; M.B. Heringa; Henner Hollert; S. Huber; M. Kramer; A. Magdeburg; H.T. Ratte; R. Sauerborn-Klobucar; A. Sokolowski; P. Soldan; T. Smital; D. Stalter; P. Venier; Chr. Ziemann; J. Zipperle; S. Buchinger

An international round‐robin study on the Ames fluctuation test [ISO 11350, 2012], a microplate version of the classic plate‐incorporation method for the detection of mutagenicity in water, wastewater and chemicals was performed by 18 laboratories from seven countries. Such a round‐robin study is a precondition for both the finalization of the ISO standardization process and a possible regulatory implementation in water legislation. The laboratories tested four water samples (spiked/nonspiked) and two chemical mixtures with and without supplementation of a S9‐mix. Validity criteria (acceptable spontaneous and positive control‐induced mutation counts) were fulfilled by 92–100%, depending on the test conditions. A two‐step method for statistical evaluation of the test results is proposed and assessed in terms of specificity and sensitivity. The data were first subjected to powerful analysis of variance (ANOVA) after an arcsine‐square‐root transformation to detect significant differences between the test samples and the negative control (NC). A threshold (TH) value based on a pooled NC was then calculated to exclude false positive test results. Statistically, positive effects observed by the Williams test were considered negative, if the mean of all replicates of a sample did not exceed the calculated TH. By making use of this approach, the overall test sensitivity was 100%, and the test specificity ranged from 80 to 100%. Environ. Mol. Mutagen. 2012.


Science of The Total Environment | 2014

In vitro bioassays for detecting dioxin-like activity--application potentials and limits of detection, a review.

Kathrin Eichbaum; Markus Brinkmann; Sebastian Buchinger; Georg Reifferscheid; Markus Hecker; John P. Giesy; Magnus Engwall; Bert van Bavel; Henner Hollert

Use of in vitro assays as screening tool to characterize contamination of a variety of environmental matrices has become an increasingly popular and powerful toolbox in the field of environmental toxicology. While bioassays cannot entirely substitute analytical methods such as gas chromatography-mass spectrometry (GC-MS), the increasing improvement of cell lines and standardization of bioassay procedures enhance their utility as bioanalytical pre-screening tests prior to more targeted chemical analytical investigations. Dioxin-receptor-based assays provide a holistic characterization of exposure to dioxin-like compounds (DLCs) by integrating their overall toxic potential, including potentials of unknown DLCs not detectable via e.g. GC-MS. Hence, they provide important additional information with respect to environmental risk assessment of DLCs. This review summarizes different in vitro bioassay applications for detection of DLCs and considers the comparability of bioassay and chemical analytically derived toxicity equivalents (TEQs) of different approaches and various matrices. These range from complex samples such as sediments through single reference to compound mixtures. A summary of bioassay derived detection limits (LODs) showed a number of current bioassays to be equally sensitive as chemical methodologies, but moreover revealed that most of the bioanalytical studies conducted to date did not report their LODs, which represents a limitation with regard to low potency samples.


Microbial Biotechnology | 2009

Bacterial genotoxicity bioreporters.

Alva Biran; Sharon Yagur-Kroll; Rami Pedahzur; Sebastian Buchinger; Georg Reifferscheid; Hadar Ben-Yoav; Yosi Shacham-Diamand; Shimshon Belkin

Ever since the introduction of the Salmonella typhimurium mammalian microsome mutagenicity assay (the ‘Ames test’) over three decades ago, there has been a constant development of additional genotoxicity assays based upon the use of genetically engineered microorganisms. Such assays rely either on reversion principles similar to those of the Ames test, or on promoter–reporter fusions that generate a quantifiable dose‐dependent signal in the presence of potential DNA damaging compounds and the induction of repair mechanisms; the latter group is the subject of the present review. Some of these assays were only briefly described in the scientific literature, whereas others have been developed all the way to commercial products. Out of these, only one, the umu‐test, has been fully validated and ISO‐ and OECD standardized. Here we review the main directions undertaken in the construction and testing of bacterial‐based genotoxicity bioassays, including the attempts to incorporate at least a partial metabolic activation capacity into the molecular design. We list the genetic modifications introduced into the tester strains, compare the performance of the different assays, and briefly describe the first attempts to incorporate such bacterial reporters into actual genotoxicity testing devices.


Reproductive Toxicology | 2012

A combined DNA-microarray and mechanism-specific toxicity approach with zebrafish embryos to investigate the pollution of river sediments

Thomas Kosmehl; Jens C. Otte; Lixin Yang; Jessica Legradi; Kerstin Bluhm; Christian Zinsmeister; Steffen Keiter; Georg Reifferscheid; Werner Manz; Thomas Braunbeck; Uwe Strähle; Henner Hollert

The zebrafish embryo has repeatedly proved to be a useful model for the analysis of effects by environmental toxicants. This proof-of-concept study was performed to investigate if an approach combining mechanism-specific bioassays with microarray techniques can obtain more in-depth insights into the ecotoxicity of complex pollutant mixtures as present, e.g., in sediment extracts. For this end, altered gene expression was compared to data from established bioassays as well as to results from chemical analysis. Mechanism-specific biotests indicated a defined hazard potential of the sediment extracts, and microarray analysis revealed several classes of significantly regulated genes which could be related to the hazard potential. Results indicate that potential classes of contaminants can be assigned to sediment extracts by both classical biomarker genes and corresponding expression profile analyses of known substances. However, it is difficult to distinguish between specific responses and more universal detoxification of the organism.


Analytical and Bioanalytical Chemistry | 2013

Integrated biological-chemical approach for the isolation and selection of polyaromatic mutagens in surface waters

Christine Gallampois; Emma L. Schymanski; Mahmoud Bataineh; Sebastian Buchinger; Martin Krauss; Georg Reifferscheid; Werner Brack

AbstractMany environmental mutagens, including polyaromatic compounds are present in surface waters, often in complex mixtures and at low concentrations. The present study provides and applies a novel, integrated approach to isolate polyaromatic mutagens in river water using a sample from the River Elbe. The sample was taken downstream of industrial discharges using blue rayon (BR) as a passive sampler that selectively adsorbs polyaromatic compounds and was subjected to effect-directed fractionation in order to characterise the compounds causing the detected effect(s). The procedure relies on three complementary fractionation steps, the Ames fluctuation assay with strains TA98, YG1024 and YG1041 with and without S9 activation and analytical screening. Several mutagenic fractions were isolated by combining mutagenicity testing with fractionation. The enhanced mutagenicity in the nitroreductase and/or O-acetyltransferase overexpressing strains YG1024 and YG1041 strains suggested amino- and/or nitro-compounds causing mutagenicity in several fractions. Analytical screening of mutagenic fractions with LC-HRMS/MS provided a list of molecular formulas typically containing one to ten nitrogen and at least two oxygen atoms supporting the presence of amino and nitro-compounds in the mutagenic fractions.n Figureᅟ


Environmental Sciences Europe | 2015

Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment

Sabine Schäfer; Georgia Buchmeier; Evelyn Claus; Lars Duester; Peter Heininger; Andrea Körner; Philipp Mayer; Albrecht Paschke; Caren Rauert; Georg Reifferscheid; Heinz Rüdel; Christian Schlechtriem; Christa Schröter-Kermani; Dieter Schudoma; Foppe Smedes; Dieter Steffen; Friederike Vietoris

Bioaccumulation, the accumulation of a chemical in an organism relative to its level in the ambient medium, is of major environmental concern. Thus, monitoring chemical concentrations in biota are widely and increasingly used for assessing the chemical status of aquatic ecosystems. In this paper, various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event-related environmental risk assessment. Assessing bioaccumulation in the field is challenging since many factors have to be considered that can affect the accumulation of a chemical in an organism. Passive sampling can complement biota monitoring since samplers with standardised partition properties can be used over a wide temporal and geographical range. Bioaccumulation is also assessed for regulation of chemicals of environmental concern whereby mainly data from laboratory studies on fish bioaccumulation are used. Field data can, however, provide additional important information for regulators. Strategies for bioaccumulation assessment still need to be harmonised for different regulations and groups of chemicals. To create awareness for critical issues and to mutually benefit from technical expertise and scientific findings, communication between risk assessment and monitoring communities needs to be improved. Scientists can support the establishment of new monitoring programs for bioaccumulation, e.g. in the frame of the amended European Environmental Quality Standard Directive.


Analytica Chimica Acta | 2010

Evaluation of chrono-amperometric signal detection for the analysis of genotoxicity by a whole cell biosensor

Sebastian Buchinger; Pia Grill; Valeri Morosow; Hadar Ben-Yoav; Yosi Shacham-Diamand; Alva Biran; Rami Pedahzur; Shimshon Belkin; Georg Reifferscheid

Electrochemical signal detection can be readily integrated in biosensors and is thus an attractive alternative to optical detection methods. In the field of environmental chemistry and ecotoxicology there is a growing demand for lab-independent devices based on whole cell biosensors for the detection of genotoxic compounds. Because of the broad occurrence of pre-genotoxic compounds that need to be bio-activated, the integration of a system for metabolic activation into such a biosensor is important. The present study evaluates a chrono-amperometric detection method in which para-aminophenyl beta-D-galactopyranoside is used as substrate for a reporter gene assay based on the bacterial SOS-response in comparison to a test system for the determination of genotoxicity in water that is standardized according to the International Organization for Standardization (ISO). The evaluation was done in order to analyze the potential of the electrochemical signal detection to be used as a complementary method for the standard test system and thus to evaluate the usability of electrochemical biosensors for the assessment of genotoxicity of environmental samples. In the present study it is shown that the chrono-amperometric detection of para-aminophenol is specific even in the presence of electro-active species generated by the enzymatic system used for the external bio-activation of contaminants. Under optimized conditions electrochemistry is sufficiently sensitive with a limit of detection that is comparable to the respective ISO-standard.

Collaboration


Dive into the Georg Reifferscheid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian Buchinger

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Werner Brack

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Hecker

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Jens C. Otte

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tobias Schulze

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Uwe Strähle

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge