Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georg Royl is active.

Publication


Featured researches published by Georg Royl.


NeuroImage | 2001

No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation.

Ute Lindauer; Georg Royl; Christoph Leithner; Marc Kühl; Lorenz Gold; Jörn Gethmann; Matthias Kohl-Bareis; Arno Villringer; Ulrich Dirnagl

Using optical methods through a closed cranial window over the rat primary sensory cortex in chloralose/urethane-anesthetized rats we evaluated the time course of oxygen delivery and consumption in response to a physiological stimulus (whisker deflection). Independent methodological approaches (optical imaging spectroscopy, single fiber spectroscopy, oxygen-dependent phosphorescence quenching) were applied to different modes of whisker deflection (single whisker, full whisker pad). Spectroscopic data were evaluated using different algorithms (constant pathlength, differential pathlength correction). We found that whisker deflection is accompanied by a significant increase of oxygenated hemoglobin (oxy-Hb), followed by an undershoot. An early increase in deoxygenated hemoglobin (deoxy-Hb) proceeded hyperoxygenation when spectroscopic data were analyzed by constant pathlength analysis. However, correcting for the wavelength dependence of photon pathlength in brain tissue (differential pathlength correction) completely eliminated the increase in deoxy-Hb. Oxygen-dependent phosphorescence quenching did not reproducibly detect early deoxygenation. Together with recent fMRI data, our results argue against significant early deoxygenation as a universal phenomenon in functionally activated mammalian brain. Interpreted with a diffusion-limited model of oxygen delivery to brain tissue our results are compatible with coupling between neuronal activity and cerebral blood flow throughout stimulation, as postulated 110 years ago by C. Roy and C. Sherrington (1890, J. Physiol. 11:85--108).


Journal of Cerebral Blood Flow and Metabolism | 2007

Improved reperfusion and neuroprotection by creatine in a mouse model of stroke

Konstantin Prass; Georg Royl; Ute Lindauer; Dorette Freyer; Dirk Megow; Ulrich Dirnagl; Gerda Stöckler-Ipsiroglu; Theo Wallimann; Josef Priller

Stroke leads to energy failure and subsequent neuronal cell loss. Creatine and phosphocreatine constitute a cellular energy buffering and transport system, and dietary creatine supplementation was shown to protect neurons in several models of neurodegeneration. Although creatine has recently been found to reduce infarct size after cerebral ischemia in mice, the mechanisms of neuroprotection remained unclear. We provide evidence for augmented cerebral blood flow (CBF) after stroke in creatine-treated mice using a magnetic resonance imaging (MRI)-based technique of CBF measurement (flow-sensitive alternating inversion recovery-MRI). Moreover, improved vasodilatory responses were detected in isolated middle cerebral arteries obtained from creatine-treated animals. After 3 weeks of dietary creatine supplementation, minor changes in brain creatine, phosphocreatine, adenosine triphosphate, adenosine diphosphate and adenosine monophosphate levels were detected, which did not reach statistical significance. However, we found a 40% reduction in infarct volume after transient focal cerebral ischemia. Our data suggest that creatine-mediated neuroprotection can occur independent of changes in the bioenergetic status of brain tissue, but may involve improved cerebrovascular function.


Journal of Cerebral Blood Flow and Metabolism | 2010

Pharmacological uncoupling of activation induced increases in CBF and CMRO2.

Christoph Leithner; Georg Royl; Nikolas Offenhauser; Martina Füchtemeier; Matthias Kohl-Bareis; Arno Villringer; Ulrich Dirnagl; Ute Lindauer

Neurovascular coupling provides the basis for many functional neuroimaging techniques. Nitric oxide (NO), adenosine, cyclooxygenase, CYP450 epoxygenase, and potassium are involved in dilating arterioles during neuronal activation. We combined inhibition of NO synthase, cyclooxygenase, adenosine receptors, CYP450 epoxygenase, and inward rectifier potassium (Kir) channels to test whether these pathways could explain the blood flow response to neuronal activation. Cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) of the somatosensory cortex were measured during forepaw stimulation in 24 rats using a laser Doppler/spectroscopy probe through a cranial window. Combined inhibition reduced CBF responses by two-thirds, somatosensory evoked potentials and activation-induced CMRO2 increases remained unchanged, and deoxy-hemoglobin (deoxy-Hb) response was abrogated. This shows that in the rat somatosensory cortex, one-third of the physiological blood flow increase is sufficient to prevent microcirculatory increase of deoxy-Hb concentration during neuronal activity. The large physiological CBF response is not necessary to support small changes in CMRO2. We speculate that the CBF response safeguards substrate delivery during functional activation with a considerable ‘safety factor’. Reduction of the CBF response in pathological states may abolish the BOLD–fMRI signal, without affecting underlying neuronal activity.


Journal of Cerebral Blood Flow and Metabolism | 2010

Neurovascular coupling in rat brain operates independent of hemoglobin deoxygenation

Ute Lindauer; Christoph Leithner; Heike Kaasch; Benjamin Rohrer; Marco Foddis; Martina Füchtemeier; Nikolas Offenhauser; Jens Steinbrink; Georg Royl; Matthias Kohl-Bareis; Ulrich Dirnagl

Recently, a universal, simple, and fail-safe mechanism has been proposed by which cerebral blood flow (CBF) might be coupled to oxygen metabolism during neuronal activation without the need for any tissue-based mechanism. According to this concept, vasodilation occurs by local erythrocytic release of nitric oxide or ATP wherever and whenever hemoglobin is deoxygenated, directly matching oxygen demand and supply in every tissue. For neurovascular coupling in the brain, we present experimental evidence challenging this view by applying an experimental regime operating without deoxy-hemoglobin. Hyperbaric hyperoxygenation (HBO) allowed us to prevent hemoglobin deoxygenation, as the oxygen that was physically dissolved in the tissue was sufficient to support oxidative metabolism. Regional CBF and regional cerebral blood oxygenation were measured using a cranial window preparation in anesthetized rats. Hemodynamic and neuronal responses to electrical forepaw stimulation or cortical spreading depression (CSD) were analyzed under normobaric normoxia and during HBO up to 4 ATA (standard atmospheres absolute). Inconsistent with the proposed mechanism, during HBO, CBF responses to functional activation or CSD were unchanged. Our results show that activation-induced CBF regulation in the brain does not operate through the release of vasoactive mediators on hemoglobin deoxygenation or through a tissue-based oxygen-sensing mechanism.


Journal of Cerebral Blood Flow and Metabolism | 2013

Regulatory T Cells Accumulate and Proliferate in the Ischemic Hemisphere for up to 30 Days after MCAO

Tobias Stubbe; Friederike Ebner; Daniel Richter; Odilo Engel; Juliane Klehmet; Georg Royl; Andreas Meisel; Robert Nitsch; Christian Meisel; Christine Brandt

Local and peripheral immune responses are activated after ischemic stroke. In our present study, we investigated the temporal distribution, location, induction, and function of regulatory T cells (Tregs) and the possible involvement of microglia, macrophages, and dendritic cells after middle cerebral artery occlusion (MCAO). C57BL/6J and Foxp3EGFP transgenic mice were subjected to 30 minutes MCAO. On days 7, 14, and 30 after MCAO, Tregs and antigen presenting cells were analyzed using fluorescence activated cell sorting multicolor staining and immunohistochemistry. A strong accumulation of Tregs was observed on days 14 and 30 in the ischemic hemisphere accompanied by the elevated presence and activation of microglia. Dendritic cells and macrophages were found on each analyzed day. About 60% of Foxp3+ Tregs in ischemic hemispheres were positive for the proliferation marker Ki-67 on days 7 and 14 after MCAO. The transfer of naive CD4+ cells depleted of Foxp3+ Tregs into RAG1−/– mice 1 day before MCAO did not lead to a de novo generation of Tregs 14 days after surgery. After depletion of CD25+ Tregs, no changes regarding neurologic outcome were detected. The sustained presence of Tregs in the brain after MCAO indicates a long-lasting immunological alteration and involvement of brain cells in immunoregulatory mechanisms.


Journal of Cerebral Blood Flow and Metabolism | 2009

In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia

Jan Klohs; Nevena Baeva; Jens Steinbrink; Riad Bourayou; Chotima Boettcher; Georg Royl; Dirk Megow; Ulrich Dirnagl; Josef Priller; Andreas Wunder

Matrix metalloproteinases (MMPs) have been implicated in the pathophysiology of cerebral ischemia. In this study, we explored whether MMP activity can be visualized by noninvasive near-infrared fluorescence (NIRF) imaging using an MMP-activatable probe in a mouse model of stroke. C57BI6 mice were subjected to transient middle cerebral artery occlusion (MCAO) or sham operation. Noninvasive NIRF imaging was performed 24 h after probe injection, and target-to-background ratios (TBRs) between the two hemispheres were determined. TBRs were significantly higher in MCAO mice injected with the MMP-activatable probe than in sham-operated mice and in MCAO mice that were injected with the nonactivatable probe as controls. Treatment with an MMP inhibitor resulted in significantly lower TBRs and lesion volumes compared to injection of vehicle. To test the contribution of MMP-9 to the fluorescence signal, MMP9-deficient (MMP9−/-) mice and wild-type controls were subjected to MCAO of different durations to attain comparable lesion volumes. TBRs were significantly lower in MMP9−/- mice, suggesting a substantial contribution of MMP-9 activity to the signal. Our study shows that MMP activity after cerebral ischemia can be imaged noninvasively with NIRF using an MMP-activatable probe, which might be a useful tool to study MMP activity in the pathophysiology of the disease.


Journal of Cerebral Blood Flow and Metabolism | 2014

The oxygen paradox of neurovascular coupling

Christoph Leithner; Georg Royl

The coupling of cerebral blood flow (CBF) to neuronal activity is well preserved during evolution. Upon changes in the neuronal activity, an incompletely understood coupling mechanism regulates diameter changes of supplying blood vessels, which adjust CBF within seconds. The physiologic brain tissue oxygen content would sustain unimpeded brain function for only 1 second if continuous oxygen supply would suddenly stop. This suggests that the CBF response has evolved to balance oxygen supply and demand. Surprisingly, CBF increases surpass the accompanying increases of cerebral metabolic rate of oxygen (CMRO2). However, a disproportionate CBF increase may be required to increase the concentration gradient from capillary to tissue that drives oxygen delivery. However, the brain tissue oxygen content is not zero, and tissue pO2 decreases could serve to increase oxygen delivery without a CBF increase. Experimental evidence suggests that CMRO2 can increase with constant CBF within limits and decreases of baseline CBF were observed with constant CMRO2. This conflicting evidence may be viewed as an oxygen paradox of neurovascular coupling. As a possible solution for this paradox, we hypothesize that the CBF response has evolved to safeguard brain function in situations of moderate pathophysiological interference with oxygen supply.


European Neurology | 2011

Dizziness in the Emergency Room: Diagnoses and Misdiagnoses

Georg Royl; Christoph J. Ploner; Christoph Leithner

Background: Dizziness is among the most frequent neurological chief complaints in emergency room (ER) patients. Although the majority of underlying disorders are benign, serious causes that require immediate in-hospital treatment may occur that are difficult to identify clinically. Methods: Retrospective study of 475 consecutive ER neurological consultations with dizziness as the chief complaint. Results: Of all ER dizziness patients, 73% were initially assigned to benign and 27% to serious diagnoses. The two most frequent disorders were benign paroxysmal positional vertigo (22%) and stroke (20%). On follow-up (available in 124 patients), 43% of all ER diagnoses were corrected: 6% of benign ER diagnoses were corrected to serious diagnoses, 23% of serious ER diagnoses were revised to benign. The most frequent corrections concerned patients with an ER diagnosis of stroke or vestibular neuronitis. Conclusions: In the patient sample studied here, serious causes of dizziness were more prevalent than can be expected from population-based surveys or data from specialized outpatient departments. However, inappropriate assignment of dizziness patients to benign diagnoses still occurred in a relevant proportion of patients. ER clinical pathways, planning of imaging resources and follow-up of patients in- and outside the hospital must take these points into consideration.


Frontiers in Neuroenergetics | 2010

Pathophysiological interference with neurovascular coupling - when imaging based on hemoglobin might go blind

Ute Lindauer; Ulrich Dirnagl; Martina Füchtemeier; Caroline Böttiger; Nikolas Offenhauser; Christoph Leithner; Georg Royl

Assessing neuronal activity by non-invasive functional brain imaging techniques which are based on the hemodynamic response depends totally on the physiological cascade of metabolism and blood flow. At present, functional brain imaging with near infrared spectroscopy (NIRS) or BOLD-fMRI is widely used in cognitive neuroscience in healthy subjects where neurovascular coupling and cerebrovascular reactivity can be assumed to be intact. Local activation studies as well as studies investigating functional connectivity between brain regions of the resting brain provide a rapidly increasing body of knowledge on brain function in humans and animals. Furthermore, functional NIRS and MRI techniques are increasingly being used in patients with severe brain diseases and this use might gain more and more importance for establishing their use in the clinical routine. However, more and more experimental evidence shows that changes in baseline physiological parameters, pharmacological interventions, or disease-related vascular changes may significantly alter the normal response of blood flow and blood oxygenation and thus may lead to misinterpretation of neuronal activity. In this article we present examples of recent experimental findings on pathophysiological changes of neurovascular coupling parameters in animals and discuss their potential implications for functional imaging based on hemodynamic signals such as fNIRS or BOLD-fMRI. To enable correct interpretation of neuronal activity by vascular signals, future research needs to deepen our understanding of the basic mechanisms of neurovascular coupling and the specific characteristics of disturbed neurovascular coupling in the diseased brain.


Brain Research | 2009

Effects of the PDE5-inhibitor vardenafil in a mouse stroke model

Georg Royl; Mustafa Balkaya; Sabrina M. Lehmann; Seija Lehnardt; Katharina Stohlmann; Ute Lindauer; Matthias Endres; Ulrich Dirnagl; Andreas Meisel

Recent experimental studies in rodents suggest that treatment with inhibitors of phosphodiesterase type 5 (PDE5) (tadalafil, sildenafil, zaprinast) not only increases cerebral blood flow but also improves functional recovery after stroke. Here, we investigated in a mouse model of stroke the effects of vardenafil on survival, functional outcome and lesion size after experimental stroke. Mice were subjected to experimental stroke by occlusion of the middle cerebral artery (MCAO) for 45 min. A group of mice received vardenafil (twice 10 mg/kg body weight per day orally over 14 days) starting 3 h after MCAO. Control animals received the vehicle only. Survival, body weight, and behavior were monitored over 4 weeks and brain lesions were measured by T2-weighted MRI, hematoxylin/eosin -- as well as GFAP-staining of cryostat sections, subsequently. The mortality in MCAO-operated animals amounted to 45% until day 10 after stroke and no significant difference in survival between the vardenafil- and vehicle-treatment groups was observed. Compared to sham-operated animals, MCAO-operated mice from both treatment groups demonstrated a significant weight loss until day 5 and regained their body weight by day 14 after ischemia. There was no significant difference between the vardenafil and vehicle-treated MCAO groups. In behavioral studies (sucrose consumption and pole test), analyzing sensorimotor functions as well as a parameter of depression-like symptoms, we observed no significant effect of vardenafil treatment on functional recovery in our model of stroke. Although we observed a trend towards less hemispherical atrophy in the vardenafil compared to the vehicle-treated group four weeks after MCAO our data do not suggest a functionally relevant CNS-tissue protective or regenerative effect in murine stroke.

Collaboration


Dive into the Georg Royl's collaboration.

Top Co-Authors

Avatar

Matthias Kohl-Bareis

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Priller

Humboldt University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge