Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Füchtemeier is active.

Publication


Featured researches published by Martina Füchtemeier.


Nature Communications | 2014

Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model

Andrea Delekate; Martina Füchtemeier; Toni Schumacher; Cordula Ulbrich; Marco Foddis; Gabor C. Petzold

Astrocytic network alterations have been reported in Alzheimers disease (AD), but the underlying pathways have remained undefined. Here we measure astrocytic calcium, cerebral blood flow and amyloid-β plaques in vivo in a mouse model of AD using multiphoton microscopy. We find that astrocytic hyperactivity, consisting of single-cell transients and calcium waves, is most pronounced in reactive astrogliosis around plaques and is sometimes associated with local blood flow changes. We show that astroglial hyperactivity is reduced after P2 purinoreceptor blockade or nucleotide release through connexin hemichannels, but is augmented by increasing cortical ADP concentration. P2X receptor blockade has no effect, but inhibition of P2Y1 receptors, which are strongly expressed by reactive astrocytes surrounding plaques, completely normalizes astrocytic hyperactivity. Our data suggest that astroglial network dysfunction is mediated by purinergic signalling in reactive astrocytes, and that intervention aimed at P2Y1 receptors or hemichannel-mediated nucleotide release may help ameliorate network dysfunction in AD.


Journal of Cerebral Blood Flow and Metabolism | 2010

Pharmacological uncoupling of activation induced increases in CBF and CMRO2.

Christoph Leithner; Georg Royl; Nikolas Offenhauser; Martina Füchtemeier; Matthias Kohl-Bareis; Arno Villringer; Ulrich Dirnagl; Ute Lindauer

Neurovascular coupling provides the basis for many functional neuroimaging techniques. Nitric oxide (NO), adenosine, cyclooxygenase, CYP450 epoxygenase, and potassium are involved in dilating arterioles during neuronal activation. We combined inhibition of NO synthase, cyclooxygenase, adenosine receptors, CYP450 epoxygenase, and inward rectifier potassium (Kir) channels to test whether these pathways could explain the blood flow response to neuronal activation. Cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) of the somatosensory cortex were measured during forepaw stimulation in 24 rats using a laser Doppler/spectroscopy probe through a cranial window. Combined inhibition reduced CBF responses by two-thirds, somatosensory evoked potentials and activation-induced CMRO2 increases remained unchanged, and deoxy-hemoglobin (deoxy-Hb) response was abrogated. This shows that in the rat somatosensory cortex, one-third of the physiological blood flow increase is sufficient to prevent microcirculatory increase of deoxy-Hb concentration during neuronal activity. The large physiological CBF response is not necessary to support small changes in CMRO2. We speculate that the CBF response safeguards substrate delivery during functional activation with a considerable ‘safety factor’. Reduction of the CBF response in pathological states may abolish the BOLD–fMRI signal, without affecting underlying neuronal activity.


Journal of Cerebral Blood Flow and Metabolism | 2010

Neurovascular coupling in rat brain operates independent of hemoglobin deoxygenation

Ute Lindauer; Christoph Leithner; Heike Kaasch; Benjamin Rohrer; Marco Foddis; Martina Füchtemeier; Nikolas Offenhauser; Jens Steinbrink; Georg Royl; Matthias Kohl-Bareis; Ulrich Dirnagl

Recently, a universal, simple, and fail-safe mechanism has been proposed by which cerebral blood flow (CBF) might be coupled to oxygen metabolism during neuronal activation without the need for any tissue-based mechanism. According to this concept, vasodilation occurs by local erythrocytic release of nitric oxide or ATP wherever and whenever hemoglobin is deoxygenated, directly matching oxygen demand and supply in every tissue. For neurovascular coupling in the brain, we present experimental evidence challenging this view by applying an experimental regime operating without deoxy-hemoglobin. Hyperbaric hyperoxygenation (HBO) allowed us to prevent hemoglobin deoxygenation, as the oxygen that was physically dissolved in the tissue was sufficient to support oxidative metabolism. Regional CBF and regional cerebral blood oxygenation were measured using a cranial window preparation in anesthetized rats. Hemodynamic and neuronal responses to electrical forepaw stimulation or cortical spreading depression (CSD) were analyzed under normobaric normoxia and during HBO up to 4 ATA (standard atmospheres absolute). Inconsistent with the proposed mechanism, during HBO, CBF responses to functional activation or CSD were unchanged. Our results show that activation-induced CBF regulation in the brain does not operate through the release of vasoactive mediators on hemoglobin deoxygenation or through a tissue-based oxygen-sensing mechanism.


Frontiers in Neuroenergetics | 2010

Pathophysiological interference with neurovascular coupling - when imaging based on hemoglobin might go blind

Ute Lindauer; Ulrich Dirnagl; Martina Füchtemeier; Caroline Böttiger; Nikolas Offenhauser; Christoph Leithner; Georg Royl

Assessing neuronal activity by non-invasive functional brain imaging techniques which are based on the hemodynamic response depends totally on the physiological cascade of metabolism and blood flow. At present, functional brain imaging with near infrared spectroscopy (NIRS) or BOLD-fMRI is widely used in cognitive neuroscience in healthy subjects where neurovascular coupling and cerebrovascular reactivity can be assumed to be intact. Local activation studies as well as studies investigating functional connectivity between brain regions of the resting brain provide a rapidly increasing body of knowledge on brain function in humans and animals. Furthermore, functional NIRS and MRI techniques are increasingly being used in patients with severe brain diseases and this use might gain more and more importance for establishing their use in the clinical routine. However, more and more experimental evidence shows that changes in baseline physiological parameters, pharmacological interventions, or disease-related vascular changes may significantly alter the normal response of blood flow and blood oxygenation and thus may lead to misinterpretation of neuronal activity. In this article we present examples of recent experimental findings on pathophysiological changes of neurovascular coupling parameters in animals and discuss their potential implications for functional imaging based on hemodynamic signals such as fNIRS or BOLD-fMRI. To enable correct interpretation of neuronal activity by vascular signals, future research needs to deepen our understanding of the basic mechanisms of neurovascular coupling and the specific characteristics of disturbed neurovascular coupling in the diseased brain.


Acta Neuropathologica | 2015

Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation

Agata Mossakowski; Julian Pohlan; Daniel Bremer; Randall L. Lindquist; Jason M. Millward; Markus Bock; Karolin Pollok; Ronja Mothes; Leonard Viohl; Moritz Radbruch; Jenny Gerhard; Judith Bellmann-Strobl; Janina Behrens; Carmen Infante-Duarte; Anja Mähler; Michael Boschmann; Jan Leo Rinnenthal; Martina Füchtemeier; Josephine Herz; Florence Pache; Markus Bardua; Josef Priller; Anja E. Hauser; Friedemann Paul; Raluca Niesner; Helena Radbruch

The functional dynamics and cellular sources of oxidative stress are central to understanding MS pathogenesis but remain elusive, due to the lack of appropriate detection methods. Here we employ NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX enzymes) in vivo to identify inflammatory monocytes, activated microglia, and astrocytes expressing NOX1 as major cellular sources of oxidative stress in the central nervous system of mice affected by experimental autoimmune encephalomyelitis (EAE). This directly affects neuronal function in vivo, indicated by sustained elevated neuronal calcium. The systemic involvement of oxidative stress is mirrored by overactivation of NOX enzymes in peripheral CD11b+ cells in later phases of both MS and EAE. This effect is antagonized by systemic intake of the NOX inhibitor and anti-oxidant epigallocatechin-3-gallate. Together, this persistent hyper-activation of oxidative enzymes suggests an “oxidative stress memory” both in the periphery and CNS compartments, in chronic neuroinflammation.


NeuroImage | 2008

Hypothermia effects on neurovascular coupling and cerebral metabolic rate of oxygen

Georg Royl; Martina Füchtemeier; Christoph Leithner; Dirk Megow; Nikolas Offenhauser; Jens Steinbrink; Matthias Kohl-Bareis; Ulrich Dirnagl; Ute Lindauer

Neuronal activation is accompanied by a local increase in cerebral blood flow (CBF) and in cerebral metabolic rate of oxygen (CMRO(2)), caused by neurovascular and neurometabolic coupling. Hypothermia is used as a neuroprotective approach in surgical patients and therapeutically after cardiac arrest or stroke. The effect of hypothermia on neurovascular coupling is of interest for evaluating brain function in these patients, but has not been determined so far. It is not clear whether functional hyperaemia actually operates at subnormal temperatures. In addition, decreasing brain temperature reduces spontaneous CMRO(2) following a known quantitative relationship (Q(10)). Q(10) determination may serve to validate a recently introduced CMRO(2) measurement approach relying on optical measurements of CBF and hemoglobin concentration. We applied this method to investigate hypothermia in a functional study of the somatosensory cortex. Anesthetized Wistar rats underwent surgical implantation of a closed cranial window. Using laser Doppler flowmetry and optical spectroscopy, relative changes in CBF and hemoglobin concentration were measured continuously. At the same time, an electroencephalogram (EEG) was recorded from the measurement site. By the application of ice packs, whole-body hypothermia was induced, followed by rewarming. Spontaneous EEG, CBF and CMRO(2) were measured, interleaved by blocks of electrical forepaw stimulation. The Q(10) obtained from spontaneous CMRO(2) changes of 4.4 (95% confidence interval 3.7-5.1) was close to published values, indicating the reliability of the CMRO(2) measurement. Lowering brain temperature decreased functional changes of CBF and CMRO(2) as well as amplitudes of somatosensory evoked potentials (SEP) to the same degree. In conclusion, neurovascular and neurometabolic coupling is preserved during hypothermia.


Journal of Cerebral Blood Flow and Metabolism | 2015

Vascular change and opposing effects of the angiotensin type 2 receptor in a mouse model of vascular cognitive impairment

Martina Füchtemeier; Marie P Brinckmann; Marco Foddis; Alexander Kunz; Chrystelle Po; Caterina Curato; Ulrich Dirnagl; Tracy D. Farr

Our aims were to assess the spatiotemporal development of brain pathology in a mouse model of chronic hypoperfusion using magnetic resonance imaging (MRI), and to test whether the renin-angiotensin system (RAS) can offer therapeutic benefit. For the first time, different patterns of cerebral blood flow alterations were observed in hypoperfused mice that ranged from an immediate and dramatic to a delayed decrease in cerebral perfusion. Diffusion tensor imaging revealed increases in several quantitative parameters in different brain regions that are indicative of white-matter degeneration; this began around 3 weeks after induction of hypoperfusion. While this model may be more variable than previously reported, neuroimaging tools represent a promising way to identify surrogate markers of pathology. Vascular remodelling was observed in hypoperfused mice, particularly in the anterior part of the Circle of Willis. While the angiotensin II receptor type 2 agonist, Compound 21 (C21), did not influence this response, it did promote expansion of the basilar artery in microcoil animals. Furthermore, C21-treated animals exhibited increased brain lymphocyte infiltration, and importantly, C21 had opposing effects on spatial reference memory in hypoperfused and sham mice. These results suggest that the RAS may have a role in vascular cognitive impairment.


Journal of Cerebral Blood Flow and Metabolism | 2010

Determination of the brain-blood partition coefficient for water in mice using MRI

Christoph Leithner; Susanne Müller; Martina Füchtemeier; Ute Lindauer; Ulrich Dirnagl; Georg Royl

Cerebral blood flow (CBF) quantification is a valuable tool in stroke research. Mice are of special interest because of the potential of genetic engineering. Magnetic resonance imaging (MRI) provides repetitive, noninvasive CBF quantification. Many MRI techniques require the knowledge of the brain–blood partition coefficient (BBPC) for water. Adopting an MRI protocol described by Roberts et al (1996) in humans, we determined the BBPC for water in 129S6/SvEv mice from proton density measurements of brain and blood, calibrated with deuterium oxide/water phantoms. The average BBPC for water was 0.89±0.03 mL/g, with little regional variation within the mouse brain.


NeuroImage | 2010

Elevating intracranial pressure reverses the decrease in deoxygenated hemoglobin and abolishes the post-stimulus overshoot upon somatosensory activation in rats

Martina Füchtemeier; Christoph Leithner; Nikolas Offenhauser; Marco Foddis; Matthias Kohl-Bareis; Ulrich Dirnagl; Ute Lindauer; Georg Royl

BOLD fMRI localizes activated brain areas by measuring decreases of deoxygenated hemoglobin (deoxy-Hb) caused by neurovascular coupling. To date, it is unclear whether intracranial pressure (ICP) modifies deoxy-Hb signaling for brain mapping. In addition, ICP elevation can test whether the BOLD post-stimulus undershoot, a transient hypo-oxygenation following functional activation, is due to vascular compliance rather than elevated cerebral metabolic rate of oxygen (CMRO(2)). We addressed these questions by studying the effect of ICP elevation on neurovascular coupling. In anesthetized rats, a cranial window was implanted over the somatosensory cortex. Using laser Doppler flowmetry and optical spectroscopy, changes in cerebral blood flow (CBF), cerebral blood volume (CBV) and deoxy-Hb were measured during electrical forepaw stimulation. Neuronal activity was monitored by somatosensory evoked potentials. ICP was elevated by subarachnoideal and intracisternal infusion of artificial cerebrospinal fluid. ICP elevation did not abrogate neurovascular coupling. However, the concomitant deoxy-Hb decrease was reduced (ICP=14mmHg) and reversed (ICP=28mmHg). Therefore, the validity of BOLD fMRI has to be questioned during increased ICP. Moreover, the amplitude of the deoxy-Hb post-stimulus overshoot was reduced with ICP elevation. CMRO(2) was not elevated during the post-stimulus response. Therefore, these data provide experimental evidence that the BOLD post-stimulus undershoot is a passive vascular phenomenon.


Journal of Cerebral Blood Flow and Metabolism | 2013

Certain types of iron oxide nanoparticles are not suited to passively target inflammatory cells that infiltrate the brain in response to stroke

Christoph Harms; Anna Lena Datwyler; Frank Wiekhorst; Lutz Trahms; Randall L. Lindquist; Eyk Schellenberger; Susanne Mueller; Gunnar Schütz; Farnoosh Roohi; Andreas Ide; Martina Füchtemeier; Karen Gertz; Golo Kronenberg; Ulrike Harms; Matthias Endres; Ulrich Dirnagl; Tracy D. Farr

Intravenous administration of iron oxide nanoparticles during the acute stage of experimental stroke can produce signal intensity changes in the ischemic region. This has been attributed, albeit controversially, to the infiltration of iron-laden blood-borne macrophages. The properties of nanoparticles that render them most suitable for phagocytosis is a matter of debate, as is the most relevant timepoint for administration. Both of these questions are examined in the present study. Imaging experiments were performed in mice with 30 minutes of middle cerebral artery occlusion (MCAO). Iron oxide nanoparticles with different charges and sizes were used, and mice received 300 μmol Fe/kg intravenously: either superparamagnetic iron oxide nanoparticles (SPIOs), ultrasmall SPIOs, or very small SPIOs. The particles were administered 7 days before MCAO, at the time of reperfusion, or 72 hours after MCAO. Interestingly, there was no observable signal change in the ischemic brains that could be attributed to iron. Furthermore, no Prussian blue-positive cells were found in the brains or blood leukocytes, despite intense staining in the livers and spleens. This implies that the nanoparticles selected for this study are not phagocytosed by blood-borne leukocytes and do not enter the ischemic mouse brain.

Collaboration


Dive into the Martina Füchtemeier's collaboration.

Researchain Logo
Decentralizing Knowledge