Georg Weitzer
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Georg Weitzer.
The EMBO Journal | 2002
Gerda Lagger; Dónal O'Carroll; Martina Rembold; Harald Khier; Julia Tischler; Georg Weitzer; Bernd Schuettengruber; Christoph Hauser; Reinhard Brunmeir; Thomas Jenuwein; Christian Seiser
Histone deacetylases (HDACs) modulate chromatin structure and transcription, but little is known about their function in mammalian development. HDAC1 was implicated previously in the repression of genes required for cell proliferation and differentiation. Here we show that targeted disruption of both HDAC1 alleles results in embryonic lethality before E10.5 due to severe proliferation defects and retardation in development. HDAC1‐deficient embryonic stem cells show reduced proliferation rates, which correlate with decreased cyclin‐associated kinase activities and elevated levels of the cyclin‐dependent kinase inhibitors p21WAF1/CIP1 and p27KIP1. Similarly, expression of p21 and p27 is up‐regulated in HDAC1‐null embryos. In addition, loss of HDAC1 leads to significantly reduced overall deacetylase activity, hyperacetylation of a subset of histones H3 and H4 and concomitant changes in other histone modifications. The expression of HDAC2 and HDAC3 is induced in HDAC1‐deficient cells, but cannot compensate for loss of the enzyme, suggesting a unique function for HDAC1. Our study provides the first evidence that a histone deacetylase is essential for unrestricted cell proliferation by repressing the expression of selective cell cycle inhibitors.
Molecular and Cellular Biology | 2010
Gordin Zupkovitz; Reinhard Grausenburger; Reinhard Brunmeir; Silvia Senese; Julia Tischler; Jennifer Jurkin; Martina Rembold; Dominique Meunier; Gerda Egger; Sabine Lagger; Susanna Chiocca; Fritz Propst; Georg Weitzer; Christian Seiser
ABSTRACT Histone deacetylases (HDACs) are chromatin-modifying enzymes that are involved in the regulation of proliferation, differentiation and development. HDAC inhibitors induce cell cycle arrest, differentiation, or apoptosis in tumor cells and are therefore promising antitumor agents. Numerous genes were found to be deregulated upon HDAC inhibitor treatment; however, the relevant target enzymes are still unidentified. HDAC1 is required for mouse development and unrestricted proliferation of embryonic stem cells. We show here that HDAC1 reversibly regulates cellular proliferation and represses the cyclin-dependent kinase inhibitor p21 in embryonic stem cells. Disruption of the p21 gene rescues the proliferation phenotype of HDAC1−/− embryonic stem cells but not the embryonic lethality of HDAC1−/− mice. In the absence of HDAC1, mouse embryonic fibroblasts scarcely undergo spontaneous immortalization and display increased p21 expression. Chromatin immunoprecipitation assays demonstrate a direct regulation of the p21 gene by HDAC1 in mouse embryonic fibroblasts. Transformation with simian virus 40 large T antigen or ablation of p21 restores normal immortalization of primary HDAC1−/− fibroblasts. Our data demonstrate that repression of the p21 gene is crucial for HDAC1-mediated control of proliferation and immortalization. HDAC1 might therefore be one of the relevant targets for HDAC inhibitors as anticancer drugs.
Circulation Research | 2000
Alice Bader; Haifa Al-Dubai; Georg Weitzer
Cardiogenesis is a multistep process regulated by a hierarchy of factors defining each developmental stage of the heart. One of these factors, leukemia inhibitory factor (LIF), a member of the interleukin-6 family of cytokines, is expressed in embryonic and neonatal cardiomyocytes and induces cardiomyocyte hypertrophy. Many aspects of embryogenesis are faithfully recapitulated during in vitro differentiation of embryonic stem cells in embryoid bodies. We exploited this model to study effects of growth factors on commitment and differentiation of cardiomyocytes and on maintenance of their phenotype. We identified LIF as a factor affecting commitment and differentiation of cardiomyocytes in an opposite manner. Diffusible LIF inhibited mesoderm formation and hampered commitment of cardiomyocytes. Lack of both the diffusible and matrix-bound isoforms of LIF in lif-/- embryoid bodies did not interfere with commitment, but it severely suppressed early differentiation of cardiomyocytes. Onset of differentiation was rescued by very low concentrations of diffusible LIF; however, consecutive differentiation was attenuated in a concentration-dependent manner by diffusible LIF both in wild-type and lif-/- cardiomyocytes. Differentiation of cardiomyocytes was severely hampered but not completely blocked in lifr-/- embryoid bodies, suggesting additional, LIF-receptor ligand independent pathways for commitment and differentiation of cardiomyocytes. At the fully differentiated state, both paracrine and autocrine LIF promoted proliferation and increased longevity of cardiomyocytes. These findings suggest that both paracrine and autocrine and both diffusible and matrix-bound isoforms of LIF contribute to the modulation of cardiogenesis in a subtle, opposite, and developmental stage-dependent manner and control proliferation and maintenance of the differentiated state of cardiomyocytes.
Handbook of experimental pharmacology | 2006
Georg Weitzer
In this review, I describe the dawn of embryoid body research and the influence of stem cell properties on embryoid body development. I will focus on the in vitro differentiation of embryonic stem cells in embryoid bodies. I summarize and combine published data for embryo-like development of embryoid bodies, and based on these findings, I will discuss open questions, concerns, and possible future directions of this still emerging field of research. I hope to provide new perspectives and experimental approaches that go beyond the current state of the art to foster an understanding of eutherian embryogenesis and provide clues for the efficient production of somatic cells for cell therapy.
Stem Cell Research | 2013
Christiane Buta; Robert David; Ralf Dressel; Mia Emgård; Christiane Fuchs; Ulrike Gross; Lyn Healy; Jürgen Hescheler; Roman Kolar; Ulrich Martin; Harald Mikkers; Franz-Josef Müller; Rebekka K. Schneider; Andrea Seiler; Horst Spielmann; Georg Weitzer
The induction of teratoma in mice by the transplantation of stem cells into extra-uterine sites has been used as a read-out for cellular pluripotency since the initial description of this phenomenon in 1954. Since then, the teratoma assay has remained the assay of choice to demonstrate pluripotency, gaining prominence during the recent hype surrounding human stem cell research. However, the scientific significance of the teratoma assay has been debated due to the fact that transplanted cells are exposed to a non-physiological environment. Since many mice are used for a result that is heavily questioned, it is time to reconsider the teratoma assay from an ethical point of view. Candidate alternatives to the teratoma assay comprise the directed differentiation of pluripotent stem cells into organotypic cells, differentiation of cells in embryoid bodies, the analysis of pluripotency-associated biomarkers with high correlation to the teratoma forming potential of stem cells, predictive epigenetic footprints, or a combination of these technologies. Each of these assays is capable of addressing one or more aspects of pluripotency, however it is essential that these assays are validated to provide an accepted robust, reproducible alternative. In particular, the rapidly expanding number of human induced pluripotent stem cell lines, requires the development of simple, affordable standardized in vitro and in silico assays to reduce the number of animal experiments performed.
The EMBO Journal | 2010
Sabine Lagger; Dominique Meunier; Mario Mikula; Reinhard Brunmeir; Michaela Schlederer; Matthias Artaker; Oliver Pusch; Gerda Egger; Astrid Hagelkruys; Wolfgang Mikulits; Georg Weitzer; Ernst W Muellner; Martin Susani; Lukas Kenner; Christian Seiser
Histone deacetylase (HDAC) inhibitors induce cell cycle arrest, differentiation or apoptosis in tumour cells and are, therefore, promising anti‐cancer reagents. However, the specific HDAC isoforms that mediate these effects are not yet identified. To explore the role of HDAC1 in tumourigenesis and tumour proliferation, we established an experimental teratoma model using wild‐type and HDAC1‐deficient embryonic stem cells. HDAC1‐deficient teratomas showed no significant difference in size compared with wild‐type teratomas. Surprisingly, loss of HDAC1 was not only linked to increased apoptosis, but also to significantly enhanced proliferation. Epithelial structures showed reduced differentiation as monitored by Oct3/4 expression and changed E‐cadherin localization and displayed up‐regulated expression of SNAIL1, a regulator of epithelial cell plasticity. Increased levels of the transcriptional regulator SNAIL1 are crucial for enhanced proliferation and reduced differentiation of HDAC1‐deficient teratoma. Importantly, the analysis of human teratomas revealed a similar link between loss of HDAC1 and enhanced tumour malignancy. These findings reveal a novel role for HDAC1 in the control of tumour proliferation and identify HDAC1 as potential marker for benign teratomas.
Cells Tissues Organs | 2012
Christiane Fuchs; Matthias Scheinast; Waltraud Pasteiner; Sabine Lagger; Manuela Hofner; Alexandra Hoellrigl; Martina Schultheis; Georg Weitzer
Aggregation of embryonic stem cells gives rise to embryoid bodies (EBs) which undergo developmental processes reminiscent of early eutherian embryonic development. Development of the three germ layers suggests that gastrulation takes place. In vivo, gastrulation is a highly ordered process but in EBs only few data support the hypothesis that self-organization of differentiating cells leads to morphology, reminiscent of the early gastrula. Here we demonstrate that a timely implantation-like process is a prerequisite for the breaking of the radial symmetry of suspended EBs. Attached to a surface, EBs develop a bilateral symmetry and presumptive mesodermal cells emerge between the center of the EBs and a horseshoe-shaped ridge of cells. The development of an epithelial sheet of cells on one side of the EBs allows us to define an ‘anterior’ and a ‘posterior’ end of the EBs. In the mesodermal area, first cardiomyocytes (CMCs) develop mainly next to this epithelial sheet of cells. Development of twice as many CMCs at the ‘left’ side of the EBs breaks the bilateral symmetry and suggests that cardiomyogenesis reflects a local or temporal asymmetry in EBs. The asymmetric appearance of CMCs but not the development of mesoderm can be disturbed by ectopic expression of the muscle-specific protein Desmin. Later, the bilateral morphology becomes blurred by an apparently chaotic differentiation of many cell types. The absence of comparable structures in aggregates of cardiovascular progenitor cells isolated from the heart demonstrates that the self-organization of cells during a gastrulation-like process is a unique feature of embryonic stem cells.
FEBS Letters | 2002
Alexandra Höllrigl; Sonja Puz; Haifa Al-Dubai; Jai Up Kim; Yassemi Capetanaki; Georg Weitzer
Desmin fulfils important functions in maintenance of muscle cells and mutations in the desmin gene have been linked to a variety of myopathies. To ascertain the role of desmins amino‐terminal domain in muscle cells we generated embryonic stem cells constitutively expressing desminΔ1–48 in a null background and investigated muscle cell development in vitro. DesminΔ1–48 lacking the first 48 amino acid residues promotes fusion of myoblasts, rescues myogenesis and down‐regulates vimentin expression in embryoid bodies, but hampers cardiomyogenesis and blocks smooth muscle development. These results demonstrate that desmins amino‐terminus has different roles in skeletal, cardiac, and smooth muscle cell development and function.
International Review of Cell and Molecular Biology | 2012
Jasmin Taubenschmid; Georg Weitzer
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Cells Tissues Organs | 2013
Julia Hoebaus; Philipp Heher; Teresa Gottschamel; Matthias Scheinast; Harmen Auner; Diana Walder; Marc Wiedner; Jasmin Taubenschmid; Maximilian Miksch; Thomas Sauer; Martina Schultheis; Alexey Kuzmenkin; Christian Seiser; Juergen Hescheler; Georg Weitzer
Compelling evidence for the existence of somatic stem cells in the heart of different mammalian species has been provided by numerous groups; however, so far it has not been possible to maintain these cells as self-renewing and phenotypically stable clonal cell lines in vitro. Thus, we sought to identify a surrogate stem cell niche for the isolation and persistent maintenance of stable clonal cardiovascular progenitor cell lines, enabling us to study the mechanism of self-renewal and differentiation in these cells. Using postnatal murine hearts with a selectable marker as the stem cell source and embryonic stem cells and leukemia inhibitory factor (LIF)-secreting fibroblasts as a surrogate niche, we succeeded in the isolation of stable clonal cardiovascular progenitor cell lines. These cell lines self-renew in an LIF-dependent manner. They express both stemness transcription factors Oct4, Sox2, and Nanog and early myocardial transcription factors Nkx2.5, GATA4, and Isl-1 at the same time. Upon LIF deprivation, they exclusively differentiate to functional cardiomyocytes and endothelial and smooth muscle cells, suggesting that these cells are mesodermal intermediates already committed to the cardiogenic lineage. Cardiovascular progenitor cell lines can be maintained for at least 149 passages over 7 years without phenotypic changes, in the presence of LIF-secreting fibroblasts. Isolation of wild-type cardiovascular progenitor cell lines from adolescent and old mice has finally demonstrated the general feasibility of this strategy for the isolation of phenotypically stable somatic stem cell lines.