Sabine Lagger
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sabine Lagger.
The International Journal of Developmental Biology | 2009
Reinhard Brunmeir; Sabine Lagger; Christian Seiser
During development from the fertilized egg to a multicellular organism, cell fate decisions have to be taken and cell lineage or tissue-specific gene expression patterns are created and maintained. These alterations in gene expression occur in the context of chromatin structure and are controlled by chromatin modifying enzymes. Gene disruption studies in different genetic systems have shown an essential role of various histone deacetylases (HDACs) during early development and cellular differentiation. In this review, we focus on the functions of the class I enzymes HDAC1 and HDAC2 during development in different organisms and summarise the current knowledge about their involvement in neurogenesis, myogenesis, haematopoiesis and epithelial cell differentiation.
Molecular and Cellular Biology | 2010
Gordin Zupkovitz; Reinhard Grausenburger; Reinhard Brunmeir; Silvia Senese; Julia Tischler; Jennifer Jurkin; Martina Rembold; Dominique Meunier; Gerda Egger; Sabine Lagger; Susanna Chiocca; Fritz Propst; Georg Weitzer; Christian Seiser
ABSTRACT Histone deacetylases (HDACs) are chromatin-modifying enzymes that are involved in the regulation of proliferation, differentiation and development. HDAC inhibitors induce cell cycle arrest, differentiation, or apoptosis in tumor cells and are therefore promising antitumor agents. Numerous genes were found to be deregulated upon HDAC inhibitor treatment; however, the relevant target enzymes are still unidentified. HDAC1 is required for mouse development and unrestricted proliferation of embryonic stem cells. We show here that HDAC1 reversibly regulates cellular proliferation and represses the cyclin-dependent kinase inhibitor p21 in embryonic stem cells. Disruption of the p21 gene rescues the proliferation phenotype of HDAC1−/− embryonic stem cells but not the embryonic lethality of HDAC1−/− mice. In the absence of HDAC1, mouse embryonic fibroblasts scarcely undergo spontaneous immortalization and display increased p21 expression. Chromatin immunoprecipitation assays demonstrate a direct regulation of the p21 gene by HDAC1 in mouse embryonic fibroblasts. Transformation with simian virus 40 large T antigen or ablation of p21 restores normal immortalization of primary HDAC1−/− fibroblasts. Our data demonstrate that repression of the p21 gene is crucial for HDAC1-mediated control of proliferation and immortalization. HDAC1 might therefore be one of the relevant targets for HDAC inhibitors as anticancer drugs.
Neuron Glia Biology | 2010
Melanie Jawerka; Dilek Colak; Leda Dimou; Carmen Spiller; Sabine Lagger; Rusty L. Montgomery; Eric N. Olson; Wolfgang Wurst; Martin Göttlicher; Magdalena Götz
Gene expression changes during cell differentiation are thought to be coordinated by histone modifications, but still little is known about the role of specific histone deacetylases (HDACs) in cell fate decisions in vivo. Here we demonstrate that the catalytic function of HDAC2 is required in adult, but not embryonic neurogenesis. While brain development and adult stem cell fate were normal upon conditional deletion of HDAC2 or in mice lacking the catalytic activity of HDAC2, neurons derived from both zones of adult neurogenesis die at a specific maturation stage. This phenotype is correlated with an increase in proliferation and the aberrant maintenance of proteins normally expressed only in progenitors, such as Sox2, also into some differentiating neurons, suggesting that HDAC2 is critically required to silence progenitor transcripts during neuronal differentiation of adult generated neurons. This cell-autonomous function of HDAC2 exclusively in adult neurogenesis reveals clear differences in the molecular mechanisms regulating neurogenesis during development and in adulthood.
Nature Medicine | 2012
Daniela Laimer; Helmut Dolznig; Karoline Kollmann; Michaela Schlederer; Olaf Merkel; Ana Iris Schiefer; Melanie R. Hassler; Susi Heider; Lena Amenitsch; Christiane Thallinger; Philipp B. Staber; Ingrid Simonitsch-Klupp; Matthias Artaker; Sabine Lagger; Suzanne D. Turner; Stefano Pileri; Pier Paolo Piccaluga; Peter Valent; Katia Messana; Indira Landra; Thomas Weichhart; Sylvia Knapp; Medhat Shehata; Maria Todaro; Veronika Sexl; Gerald Höfler; Roberto Piva; Enzo Medico; Bruce Ruggeri; Mangeng Cheng
Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkins lymphoma found in children and young adults. ALCLs frequently carry a chromosomal translocation that results in expression of the oncoprotein nucleophosmin–anaplastic lymphoma kinase (NPM-ALK). The key molecular downstream events required for NPM-ALK–triggered lymphoma growth have been only partly unveiled. Here we show that the activator protein 1 family members JUN and JUNB promote lymphoma development and tumor dissemination through transcriptional regulation of platelet-derived growth factor receptor-β (PDGFRB) in a mouse model of NPM-ALK–triggered lymphomagenesis. Therapeutic inhibition of PDGFRB markedly prolonged survival of NPM-ALK transgenic mice and increased the efficacy of an ALK-specific inhibitor in transplanted NPM-ALK tumors. Notably, inhibition of PDGFRA and PDGFRB in a patient with refractory late-stage NPM-ALK+ ALCL resulted in rapid, complete and sustained remission. Together, our data identify PDGFRB as a previously unknown JUN and JUNB target that could be a highly effective therapy for ALCL.
Cell Cycle | 2011
Jennifer Jurkin; Gordin Zupkovitz; Sabine Lagger; Reinhard Grausenburger; Astrid Hagelkruys; Lukas Kenner; Christian Seiser
Histone deacetylases (HDACs) are negative regulators of gene expression and have been implicated in tumorigenesis and tumor progression. Therefore, HDACs are promising targets for anti-tumor drugs. However, the relevant isoforms of the 18 members encompassing HDAC family have not been identified. Studies utilizing either gene targeting or knockdown approaches reveal both specific and redundant functions of the closely related class I deacetylases HDAC1 and HDAC2 in the control of proliferation and differentiation. Combined ablation of HDAC1 and HDAC2 in different cell types led to a severe proliferation defects or enhanced apoptosis supporting the idea that both enzymes are relevant targets for tumor therapy. In a recent study on the role of HDAC1 in teratoma formation we have reported a novel and surprising function of HDAC1 in tumorigenesis. In this tumor model HDAC1 attenuates proliferation during teratoma formation. In the present work we discuss new findings on redundant and unique functions of HDAC1 and HDAC2 as regulators of proliferation and tumorigenesis and potential implications for applications of HDAC inhibitors as therapeutic drugs.
PLOS Genetics | 2010
Reinhard Brunmeir; Sabine Lagger; Elisabeth Simboeck; Anna Sawicka; Gerda Egger; Astrid Hagelkruys; Yu Zhang; Patrick Matthias; Wolfgang J. Miller; Christian Seiser
Large fractions of eukaryotic genomes contain repetitive sequences of which the vast majority is derived from transposable elements (TEs). In order to inactivate those potentially harmful elements, host organisms silence TEs via methylation of transposon DNA and packaging into chromatin associated with repressive histone marks. The contribution of individual histone modifications in this process is not completely resolved. Therefore, we aimed to define the role of reversible histone acetylation, a modification commonly associated with transcriptional activity, in transcriptional regulation of murine TEs. We surveyed histone acetylation patterns and expression levels of ten different murine TEs in mouse fibroblasts with altered histone acetylation levels, which was achieved via chemical HDAC inhibition with trichostatin A (TSA), or genetic inactivation of the major deacetylase HDAC1. We found that one LTR retrotransposon family encompassing virus-like 30S elements (VL30) showed significant histone H3 hyperacetylation and strong transcriptional activation in response to TSA treatment. Analysis of VL30 transcripts revealed that increased VL30 transcription is due to enhanced expression of a limited number of genomic elements, with one locus being particularly responsive to HDAC inhibition. Importantly, transcriptional induction of VL30 was entirely dependent on the activation of MAP kinase pathways, resulting in serine 10 phosphorylation at histone H3. Stimulation of MAP kinase cascades together with HDAC inhibition led to simultaneous phosphorylation and acetylation (phosphoacetylation) of histone H3 at the VL30 regulatory region. The presence of the phosphoacetylation mark at VL30 LTRs was linked with full transcriptional activation of the mobile element. Our data indicate that the activity of different TEs is controlled by distinct chromatin modifications. We show that activation of a specific mobile element is linked to a dual epigenetic mark and propose a model whereby phosphoacetylation of histone H3 is crucial for full transcriptional activation of VL30 elements.
Development | 2014
Astrid Hagelkruys; Sabine Lagger; Julia Krahmer; Alexandra Leopoldi; Matthias Artaker; Oliver Pusch; Jürgen Zezula; Simon Weissmann; Yunli Xie; Christian Schöfer; Michaela Schlederer; Gerald Brosch; Patrick Matthias; Jim Selfridge; Hans Lassmann; Jürgen A. Knoblich; Christian Seiser
The histone deacetylases HDAC1 and HDAC2 are crucial regulators of chromatin structure and gene expression, thereby controlling important developmental processes. In the mouse brain, HDAC1 and HDAC2 exhibit different developmental stage- and lineage-specific expression patterns. To examine the individual contribution of these deacetylases during brain development, we deleted different combinations of Hdac1 and Hdac2 alleles in neural cells. Ablation of Hdac1 or Hdac2 by Nestin-Cre had no obvious consequences on brain development and architecture owing to compensation by the paralog. By contrast, combined deletion of Hdac1 and Hdac2 resulted in impaired chromatin structure, DNA damage, apoptosis and embryonic lethality. To dissect the individual roles of HDAC1 and HDAC2, we expressed single alleles of either Hdac1 or Hdac2 in the absence of the respective paralog in neural cells. The DNA-damage phenotype observed in double knockout brains was prevented by expression of a single allele of either Hdac1 or Hdac2. Strikingly, Hdac1-/-Hdac2+/- brains showed normal development and no obvious phenotype, whereas Hdac1+/-Hdac2-/- mice displayed impaired brain development and perinatal lethality. Hdac1+/-Hdac2-/- neural precursor cells showed reduced proliferation and premature differentiation mediated by overexpression of protein kinase C, delta, which is a direct target of HDAC2. Importantly, chemical inhibition or knockdown of protein kinase C delta was sufficient to rescue the phenotype of neural progenitor cells in vitro. Our data indicate that HDAC1 and HDAC2 have a common function in maintaining proper chromatin structures and show that HDAC2 has a unique role by controlling the fate of neural progenitors during normal brain development.
The EMBO Journal | 2010
Sabine Lagger; Dominique Meunier; Mario Mikula; Reinhard Brunmeir; Michaela Schlederer; Matthias Artaker; Oliver Pusch; Gerda Egger; Astrid Hagelkruys; Wolfgang Mikulits; Georg Weitzer; Ernst W Muellner; Martin Susani; Lukas Kenner; Christian Seiser
Histone deacetylase (HDAC) inhibitors induce cell cycle arrest, differentiation or apoptosis in tumour cells and are, therefore, promising anti‐cancer reagents. However, the specific HDAC isoforms that mediate these effects are not yet identified. To explore the role of HDAC1 in tumourigenesis and tumour proliferation, we established an experimental teratoma model using wild‐type and HDAC1‐deficient embryonic stem cells. HDAC1‐deficient teratomas showed no significant difference in size compared with wild‐type teratomas. Surprisingly, loss of HDAC1 was not only linked to increased apoptosis, but also to significantly enhanced proliferation. Epithelial structures showed reduced differentiation as monitored by Oct3/4 expression and changed E‐cadherin localization and displayed up‐regulated expression of SNAIL1, a regulator of epithelial cell plasticity. Increased levels of the transcriptional regulator SNAIL1 are crucial for enhanced proliferation and reduced differentiation of HDAC1‐deficient teratoma. Importantly, the analysis of human teratomas revealed a similar link between loss of HDAC1 and enhanced tumour malignancy. These findings reveal a novel role for HDAC1 in the control of tumour proliferation and identify HDAC1 as potential marker for benign teratomas.
The International Journal of Developmental Biology | 2010
Christina Murko; Sabine Lagger; Marianne Steiner; Christian Seiser; Christian Schoefer; Oliver Pusch
Histone deacetylases (HDACs) are a family of enzymes which regulate the acetylation state of nucleosomal histones, as well as non-histone proteins. By altering local chromatin architecture, HDACs play important roles in shaping cell differentiation and morphogenesis. Expression of class I HDACs during early chick development has so far not been analyzed. Here, we report the expression profile of chick class I HDACs from the onset of gastrulation (HH2) to day 4 of development and compare it to relevant stages during mouse development. Visualized by in situ hybridization to whole mount embryos and tissue sections, we found tissue-specific overlapping temporal and spatial expression domains for all four class I HDACs in chick and mouse, although species-specific differences could be identified. All class I HDACs in both species are highly expressed in the developing brain. In particular, HDAC1 is expressed at sites of anterior and posterior neural tube closure most obvious in the hot spot-like expression of HDAC1 in HH12 chicken embryos. A significant species-specific spatio-temporal expression pattern was observed for HDAC8. Whereas HDAC8 is exclusively found in fore- and midbrain regions during early mouse embryogenesis, the chick ortholog shows an expanded expression pattern, suggesting a more diversified role of HDAC8 in the chick system. Our results present a basis for further functional analysis of class I HDACs in chick development.
Nature Immunology | 2014
Nicole Boucheron; Roland Tschismarov; Lisa Göschl; Mirjam A. Moser; Sabine Lagger; Shinya Sakaguchi; Mircea Winter; Florian Lenz; Dijana Vitko; Florian P. Breitwieser; Lena Müller; Hammad Hassan; Keiryn L. Bennett; Jacques Colinge; Wolfgang Schreiner; Takeshi Egawa; Ichiro Taniuchi; Patrick Matthias; Christian Seiser; Wilfried Ellmeier
Molecular mechanisms that maintain lineage integrity of helper T cells are largely unknown. Here we show histone deacetylases 1 and 2 (HDAC1 and HDAC2) as crucial regulators of this process. Loss of HDAC1 and HDAC2 during late T cell development led to the appearance of major histocompatibility complex (MHC) class II–selected CD4+ helper T cells that expressed CD8-lineage genes such as Cd8a and Cd8b1. HDAC1 and HDAC2–deficient T helper type 0 (TH0) and TH1 cells further upregulated CD8-lineage genes and acquired a CD8+ effector T cell program in a manner dependent on Runx-CBFβ complexes, whereas TH2 cells repressed features of the CD8+ lineage independently of HDAC1 and HDAC2. These results demonstrate that HDAC1 and HDAC2 maintain integrity of the CD4 lineage by repressing Runx-CBFβ complexes that otherwise induce a CD8+ effector T cell–like program in CD4+ T cells.