Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George A. Doss is active.

Publication


Featured researches published by George A. Doss.


Journal of Medicinal Chemistry | 2014

Omarigliptin (MK-3102): A Novel Long-Acting DPP-4 Inhibitor for Once-Weekly Treatment of Type 2 Diabetes.

Tesfaye Biftu; Ranabir SinhaRoy; Ping Chen; Xiaoxia Qian; Dennis Feng; Jeffrey T. Kuethe; Giovanna Scapin; Ying Duo Gao; Youwei Yan; Davida Krueger; Annette Bak; George J. Eiermann; Jiafang He; Jason M. Cox; Jacqueline D. Hicks; Kathy Lyons; Huaibing He; Gino Salituro; Sharon Tong; Sangita B. Patel; George A. Doss; Aleksandr Petrov; Joe C. Wu; Shiyao Sherrie Xu; Charles Sewall; Xiaoping Zhang; Bei Zhang; Nancy A. Thornberry; Ann E. Weber

In our effort to discover DPP-4 inhibitors with added benefits over currently commercially available DPP-4 inhibitors, MK-3102 (omarigliptin), was identified as a potent and selective dipeptidyl peptidase 4 (DPP-4) inhibitor with an excellent pharmacokinetic profile amenable for once-weekly human dosing and selected as a clinical development candidate. This manuscript summarizes the mechanism of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and human efficacy data for omarigliptin, which is currently in phase 3 clinical development.


Drug Metabolism Reviews | 2006

Addressing metabolic activation as an integral component of drug design

George A. Doss; Thomas A. Baillie

Formation of reactive intermediates by metabolism of xenobiotics represents a potential liability in drug discovery and development. Although it is difficult, if not impossible, to predict toxicities of drug candidates accurately, it is prudent to try to minimize bioactivation liabilities as early as possible in the stage of drug discovery and lead optimization. Measurement of covalent binding to liver microsomal proteins in the presence and the absence of NADPH, as well as the use of trapping agents such as glutathione or cyanide ions to provide structural information on reactive intermediates, have been used routinely to screen drug candidates. These in vitro experiments are often supplemented with in vivo covalent binding data in rats. The resulting data are not only used to eliminate potentially risky compounds, but, more importantly, they provide invaluable information to direct the Medicinal Chemistry group efforts to design analogs with less propensity to undergo bioactivation. Select case histories are presented in which this approach was successfully applied at Merck.


Drug Metabolism and Disposition | 2008

Characterization of 1'-hydroxymidazolam glucuronidation in human liver microsomes.

Bing Zhu; David Bush; George A. Doss; Stella H. Vincent; Ronald B. Franklin; Shiyao Xu

Midazolam is a potent benzodiazepine derivative with sedative, hypnotic, anticonvulsant, muscle-relaxant, and anxiolytic activities. It undergoes oxidative metabolism catalyzed almost exclusively by the CYP3A subfamily to a major metabolite, 1′-hydroxymidazolam, which is equipotent to midazolam. 1′-Hydroxymidazolam is subject to glucuronidation followed by renal excretion. To date, the glucuronidation of 1′-hydroxymidazolam has not been evaluated in detail. In the current study, we identified an unreported quaternary N-glucuronide, as well as the known O-glucuronide, from incubations of 1′-hydroxymidazolam in human liver microsomes enriched with uridine 5′-diphosphoglucuronic acid (UDPGA). The structure of the N-glucuronide was confirmed by nuclear magnetic resonance analysis, which showed that glucuronidation had occurred at N-2 (the imidazole nitrogen that is not a part of the benzodiazepine ring). In a separate study, in which midazolam was used as the substrate, an analogous N-glucuronide also was detected from incubations with human liver microsomes in the presence of UDPGA. Investigation of the kinetics of 1′-hydroxymidazolam glucuronidation in human liver microsomes indicated autoactivation kinetics (Hill coefficient, n = 1.2–1.5). The apparent S50 values for the formation of O- and N-glucuronides were 43 and 18 μM, respectively, and the corresponding apparent Vmax values were 363 and 21 pmol/mg of microsomal protein/min. Incubations with recombinant human uridine diphosphate glucuronosyltransferases (UGTs) indicated that the O-glucuronidation was catalyzed by UGT2B4 and UGT2B7, whereas the N-glucuronidation was catalyzed by UGT1A4. Consistent with these observations, hecogenin, a selective inhibitor of UGT1A4, selectively inhibited the N-glucuronidation, whereas diclofenac, a potent inhibitor of UGT2B7, had a greater inhibitory effect on the O-glucuronidation than on the N-glucuronidation. In summary, our study provides the first demonstration of N-glucuronidation of 1′-hydroxymidazolam in human liver microsomes.


Drug Metabolism and Disposition | 2005

Evidence for the bioactivation of zomepirac and tolmetin by an oxidative pathway. Identification of glutathione adducts in vitro in human liver microsomes and in vivo in rats

Qing Chen; George A. Doss; Elaine C. Tung; Wensheng Liu; Yui S. Tang; Matthew P. Braun; Varsha Didolkar; John R. Strauss; Regina W. Wang; Ralph A. Stearns; David C. Evans; Thomas A. Baillie; Wei Tang

Although zomepirac (ZP) and tolmetin (TM) induce anaphylactic reactions and form reactive acyl glucuronides, a direct link between the two events remains obscure. We report herein that, in addition to acyl glucuronidation, both drugs are subject to oxidative bioactivation. Following incubations of ZP with human liver microsomes fortified with NADPH and glutathione (GSH), a metabolite with an MH+ ion at m/z 597 was detected by LC/MS/MS. On the basis of collision-induced dissociation and NMR evidence, the structure of this metabolite was determined to be 5-[4′-chlorobenzoyl]-1,4-dimethyl-3-glutathionylpyrrole-2-acetic acid (ZP-SG), suggesting that the pyrrole moiety of ZP had undergone oxidation to an epoxide intermediate, followed by addition of GSH and loss of the elements of H2O to yield the observed conjugate. The oxidative bioactivation of ZP most likely is catalyzed by cytochrome P450 (P450) 3A4, since the formation of ZP-SG was reduced to ∼10% of control values following pretreatment of human liver microsomes with ketoconazole or with an inhibitory anti-P450 3A4 IgG. A similar GSH adduct, namely 5-[4′-methylbenzoyl]-1-methyl-3-glutathionylpyrrole-2-acetic acid (TM-SG), was identified when TM was incubated with human liver microsomal preparations. The relevance of these in vitro findings to the in vivo situation was established through the detection of the same thiol adducts in rats treated with ZP and TM, respectively. Taken together, these data suggest that, in addition to the formation of acyl glucuronides, oxidative metabolism of ZP and TM affords reactive species that may haptenize proteins and thereby contribute to the drug-mediated anaphylactic reactions.


Journal of Pharmaceutical and Biomedical Analysis | 2002

Determination of efavirenz, a selective non-nucleoside reverse transcriptase inhibitor, in human plasma using HPLC with post-column photochemical derivatization and fluorescence detection

C.Z. Matthews; E.J. Woolf; R.S. Mazenko; H. Haddix-Wiener; C.M. Chavez-Eng; M.L. Constanzer; George A. Doss; B.K. Matuszewski

Methods for the quantitative determination of efavirenz in human plasma and the qualitative assessment of the stereochemical integrity of efavirenz in post-dose human plasma samples are described. After the addition of an internal standard, plasma samples were extracted with hexane-methylene chloride (65/35, v/v%). The extracts were evaporated to dryness and reconstituted in mobile phase. Upon exposure to UV light, the analyte was found to form fluorescent products; the major fluorescent product was isolated and identified as a substituted quinoline. Thus, the plasma extracts were analyzed via HPLC with post-column photochemical derivatization and fluorescence detection. Reverse phase chromatography was used for the quantitative assay, whereas chromatography with a column containing a chiral stationary phase (dinitrobenzoyl leucine) was used for the stereochemical assessment. The quantitative assay has been validated in the concentration range of 50-1000 ng/ml using 0.5 ml samples. Analyte recovery was better than 89% at all points on the standard curve. Intra-day precision was better than 5% C.V., while accuracy was between 95 and 104% of nominal over the range of the assay. The selective detection method reduces the likelihood of interference by co-administered medications or endogenous species. The stereochemical configuration of efavirenz was confirmed to remain intact in post-dose human plasma samples. The quantitative method has been successfully utilized to support a study in which a possible drug interaction between co-administered HIV protease inhibitors and efavirenz was evaluated.


Journal of Medicinal Chemistry | 2008

Conformational Analysis and Receptor Docking of N-[(1S,2S)-3-(4-Chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-{[5-(trifluoromethyl)pyridin-2-yl]oxy}propanamide (Taranabant, MK-0364), a Novel, Acyclic Cannabinoid-1 Receptor Inverse Agonist

Linus S. Lin; Sookhee Ha; Richard G. Ball; Nancy N. Tsou; Laurie Castonguay; George A. Doss; Tung M. Fong; Chun-Pyn Shen; Jing Chen Xiao; Mark T. Goulet; William K. Hagmann

X-ray crystallographic, NMR spectroscopic, and computational studies of taranabant afforded similar low-energy conformers with a significant degree of rigidity along the C11-N13-C14-C16-C17 backbone but with more flexibility around bonds C8-C11 and C8-O7. Mutagenesis and docking studies suggested that taranabant and rimonabant shared the same general binding area of CB1R but with significant differences in detailed interactions. Similar to rimonabant, taranabant interacted with a cluster of aromatic residues (F(3.36)200, W(5.43)279, W(6.48)356, and Y(5.39)275) through the two phenyl rings and with F(2.57)170 and L(7.42)387 through the CF 3-Pyr ring. The notable distinction between taranabant and rimonabant was that taranabant was hydrogen-bonded with S(7.39)383 but not with K(3.28)192, while rimonabant was hydrogen-bonded with K(3.28)192 but not with S(7.39)383. The strong hydrogen bonding between the amide NH of taranabant and hydroxyl of S(7.39)383 was key to the superior affinity of taranabant to CB1R.


Drug Metabolism and Disposition | 2010

Pharmacokinetics, Metabolism, and Excretion of Anacetrapib, a Novel Inhibitor of the Cholesteryl Ester Transfer Protein, in Rats and Rhesus Monkeys

Eugene Y. Tan; Georgy Hartmann; Qing Chen; Antonio Pereira; Scott M. Bradley; George A. Doss; Andy Shiqiang Zhang; Jonathan Z. Ho; Matthew P. Braun; Dennis C. Dean; Wei Tang; Sanjeev Kumar

The pharmacokinetics and metabolism of anacetrapib (MK-0859), a novel cholesteryl ester transfer protein inhibitor, were examined in rats and rhesus monkeys. Anacetrapib exhibited a low clearance in both species and a moderate oral bioavailability of ∼38% in rats and ∼13% in monkeys. The area under the plasma concentration-time curve in both species increased in a less than dose-proportional manner over an oral dose range of 1 to 500 mg/kg. After oral administration of [14C]anacetrapib at 10 mg/kg, ∼80 and 90% of the radioactive dose was recovered over 48 h postdose from rats and monkeys, respectively. The majority of the administered radioactive dose was excreted unchanged in feces in both species. Biliary excretion of radioactivity accounted for ∼15% and urinary excretion for less than 2% of the dose. Thirteen metabolites, resulting from oxidative and secondary glucuronic acid conjugation, were identified in rat and monkey bile. The main metabolic pathways consisted of O-demethylation (M1) and hydroxylation on the biphenyl moiety (M2) and hydroxylation on the isopropyl side chain (M3); these hydroxylations were followed by O-glucuronidation of these metabolites. A glutathione adduct (M9), an olefin metabolite (M10), and a propionic acid metabolite (M11) also were identified. In addition to parent anacetrapib, M1, M2, and M3 metabolites were detected in rat but not in monkey plasma. Overall, it appears that anacetrapib exhibits a low-to-moderate degree of absorption after oral dosing and majority of the absorbed dose is eliminated via oxidation to a series of hydroxylated metabolites that undergo conjugation with glucuronic acid before excretion into bile.


Bioorganic & Medicinal Chemistry Letters | 2002

CCR5 antagonists: bicyclic isoxazolidines as conformationally constrained N-1-substituted pyrrolidines

Christopher L. Lynch; Amy Gentry; Jeffrey J. Hale; Sander G. Mills; Malcolm Maccoss; Lorraine Malkowitz; Martin S. Springer; Sandra L. Gould; Julie A. DeMartino; Salvatore J. Siciliano; Margaret A. Cascieri; George A. Doss; Anthony Carella; Gwen Carver; Karen Holmes; William A. Schleif; Renee Danzeisen; Daria J. Hazuda; Joseph Kessler; Janet Lineberger; Michael D. Miller; Emilio A. Emini

A series of CCR5 antagonists containing bicyclic isoxazolidines was generated through a nitrone mediated cycloaddition with olefins bearing the preferred pharmacophores previously described. Potent antagonists (3 and 16) were generated with enhanced affinity for the CCR5 receptor while maintaining antiviral activity against HIV.


Drug Metabolism and Disposition | 2008

In Vitro Metabolic Activation of Lumiracoxib in Rat and Human Liver Preparations

Ying Li; J. Greg Slatter; Zhoupeng Zhang; Yan Li; George A. Doss; Matthew P. Braun; Ralph A. Stearns; Dennis C. Dean; Thomas A. Baillie; Wei Tang

Recent clinical reports have suggested that the cyclooxygenase-2 inhibitor, lumiracoxib (Prexige), may cause a rare but serious hepatotoxicity in patients. In view of the close structural resemblance between lumiracoxib and diclofenac, a widely used nonsteroidal anti-inflammatory drug whose use also has been associated with rare cases of liver injury, it is possible that the toxicity of the two agents may share a common mechanism. Because it is believed that chemically reactive metabolites may play a role as mediators of diclofenac-mediated hepatotoxicity, the present in vitro study was carried out to test the hypothesis that lumiracoxib also undergoes metabolic activation when incubated with liver microsomal preparations and hepatocytes from rats and humans. By means of liquid chromatography tandem mass spectrometry and nuclear magnetic resonance spectrometry techniques, two previously unknown N-acetylcysteine (NAC) conjugates were identified, namely, 3′-NAC-4′-hydroxy lumiracoxib (M1) and 4′-hydroxy-6′-NAC-desfluoro lumiracoxib (M2), the structures of which reveal the intermediacy of an electrophilic quinone imine species. Based on the results of studies with immunoinhibitory antibodies, it was demonstrated that the formation of M1 and M2 in human liver microsomes was catalyzed by cytochrome P450 (P450) 2C9. These findings demonstrate that lumiracoxib is subject to P450-mediated bioactivation in both rat and human liver preparations, leading to the formation of a reactive intermediate analogous to species generated during the metabolism of diclofenac.


Drug Metabolism and Disposition | 2007

Absorption, Metabolism, and Excretion of [14C]MK-0524, a Prostaglandin D2 Receptor Antagonist, in Humans

Bindhu V. Karanam; Maria Madeira; Scott Bradley; Larissa Wenning; Rajesh Desai; Eric Soli; David J. Schenk; Allen N. Jones; Brian Dean; George A. Doss; Graigory Garrett; Tami Crumley; Ajay Nirula; Eseng Lai

[(3R)-4-(4-Chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopentaindol-3-yl]acetic acid (MK-0524) is a potent orally active human prostaglandin D2 receptor 1 antagonist that is currently under development for the prevention of niacin-induced flushing. The metabolism and excretion of [14C]MK-0524 in humans were investigated in six healthy human volunteers following a single p.o. dose of 40 mg (202 μCi). [14C]MK-0524 was absorbed rapidly, with plasma Cmax achieved 1 to 1.5 h postdose. The major route of excretion of radioactivity was via the feces, with 68% of the administered dose recovered in feces. Urinary excretion averaged 22% of the administered dose, for a total excretion recovery of ∼90%. The majority of the dose was excreted within 96 h following dosing. Parent compound was the primary radioactive component circulating in plasma, comprising 42 to 72% of the total radioactivity in plasma for up to 12 h. The only other radioactive component detected in plasma was M2, the acyl glucuronic acid conjugate of the parent compound. The major radioactive component in urine was M2, representing 64% of the total radioactivity. Minor metabolites included hydroxylated epimers (M1/M4) and their glucuronic acid conjugates, which occurred in the urine as urea adducts, formed presumably during storage of samples. Fecal radioactivity profiles mainly comprised the parent compound, originating from unabsorbed parent and/or hydrolyzed glucuronic acid conjugate of the parent compound. Therefore, in humans, MK-0524 was eliminated primarily via metabolism to the acyl glucuronic acid conjugate, followed by excretion of the conjugate into bile and eventually into feces.

Collaboration


Dive into the George A. Doss's collaboration.

Researchain Logo
Decentralizing Knowledge